Skip to content ↓

Topic

Soft robotics

Download RSS feed: News Articles / In the Media

Displaying 16 - 30 of 42 news clips related to this topic.
Show:

NPR

Merrit Kennedy reports for NPR that MIT researchers have developed robotic artificial muscles that can lift 1,000 times their own weight. Prof. Daniela Rus explains that the technology could eventually be used to bring "soft strong mobility to people who are otherwise unable to move."

Fortune- CNN

Writing for Fortune, Jamie Ducharme details how researchers from MIT and Harvard are one step closer to creating robots with superpowers, thanks to a new robotic artificial muscle they have developed. The new technology could be used, “in arenas ranging from medicine to architecture to space exploration,” Ducharme explains. 

HuffPost

HuffPost reporter Thomas Tamblyn writes that MIT and Harvard researchers have created a range of origami-inspired robotic muscles. “These ultra-flexible materials could be applied to everything from deep-sea robotics to creating tiny yet incredibly strong tools for performing surgery,” Tamblyn explains. 

Los Angeles Times

Researchers from MIT and Harvard have developed a new origami-inspired artificial muscle that can lift up to a thousand times its own weight, reports Amina Khan for The Los Angeles Times. Khan explains that the robotic muscles, “offer a new way to give soft robots super-strength, which could be used everywhere from inside our bodies to outer space.”

WCVB

In this WCVB segment, CSAIL postdocs Robert MacCurdy and Jeffrey Lipton explain their work developing a shock-absorbing material that could be used to help protect robots and smartphones, or in helmets. Liquid is used in the material to “absorb the energy and keep it inside,” Lipton explains.

Fox News

Grace Williams reports for FOX News that CSAIL researchers are 3-D printing shock-absorbing skins to protect robots. “Dubbed the ‘programmable viscoelastic material’ (PVM) technique, MIT’s printing method gives objects the precise stiffness or elasticity they require,” writes Williams.

CNN

To develop safer, more durable robots, CSAIL researchers have developed a technique to 3-D print robots with shock-absorbing skins, reports Matt McFarland for CNN. McFarland explains that as the “‘bumpers’ aren't rigid, it's less dangerous for a robot to crash into something.”

Popular Science

Popular Science reporter Mary Beth Griggs writes that researchers from MIT’s Computer Science and Artificial Intelligence Lab have developed a method to 3-D print robots with customized shock absorbers. The researchers hope that the “shock absorbing material could be used to create better shock absorbers for delivery drones, shock-resistant shoe soles, and even helmets.”

The Washington Post

Washington Post reporter Matt McFarland writes that MIT researchers have developed a technique for printing solid and liquid materials at the same time, a development that could make producing robots faster and easier. Prof. Daniela Rus explains that the new process could make “a big difference in what kind of machines you can make.”

Popular Science

Popular Science reporter Kelsey Atherton writes that a new 3-D printing process developed by MIT researchers incorporates both solid and liquid materials at the same time. Atherton explains that the prototype robot developed using the process walks “with hydraulic bellows, fluid pumping in and out to turn a crankshaft that moves the legs back and forth.”

CBS News

Researchers from MIT CSAIL have developed a new 3-D printing process that produces robots with no assembly required, reports Brian Mastroianni for CBS News. “MIT's new process is significant in that the production period is streamlined, with the robot's solid and liquid hydraulic parts being created in one step,” Mastroianni explains. 

Boston Magazine

Boston Magazine reporter Jamie Ducharme writes that MIT researchers have developed a way to simultaneously 3-D print liquid and solid materials, “allowing them to create functional, nearly assembly-free robots.”

BBC News

In this video, the BBC’s LJ Rich reports on the 3-D printed, soft robotic hand developed by researchers at the MIT Computer Science and Artificial Intelligence Lab. Rich explains that the robotic hand can “handle objects as delicate as an egg and as thin as a compact disk.”

The Washington Post

Washington Post reporter Rachel Feltman writes that MIT researchers have designed a new robotic hand with soft, 3-D printed fingers that can identify and lift a variety of objects. Prof. Daniela Rus explains that her group’s robotic hand operates in a way that is “much more analogous to what we do as humans."

Popular Science

Writing for Popular Science, Mary Beth Griggs reports on the soft robotic gripper developed by researchers at MIT CSAIL. “The silicone fingers are equipped with sensors that analyze the object they are touching and compare it to other items in its database,” Griggs writes.