Skip to content ↓

Topic

EAPS

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 320 news clips related to this topic.
Show:

Axios

Axios reporter Jacob Knutson highlights a new study by MIT researchers that finds the smoke released by major wildfires likely reactive chlorine-containing molecules in the atmosphere, delaying the recovery of the hole in the ozone layer. The researchers developed a model that found smoke released by Australian wildfires “chemically depleted between 3% to 5% of the total ozone column in the Southern Hemisphere mid-latitudes in June and July of 2020.”

New Scientist

New Scientist reporter James Dinneen writes that a new study by MIT researchers finds the smoke from Australian wildfires “may have enabled hydrochloric acid to dissolve at higher temperatures, generating more of the reactive chlorine molecules that destroy ozone.” Research scientist Kane Stone explains that “satellite observations showed chemistry that has never been seen before.”

Nature

MIT scientists have found that the Australian wildfires in 2019 and 2020 unleashed remnants of chlorine-containing molecules in the stratosphere, expanding the ozone hole and suggesting that more frequent wildfires could threaten the ozone hole’s recovery, reports Dyani Lewis for Nature. “It’s like a race,” says Prof. Susan Solomon. “Does the chlorine decay out of the stratosphere fast enough in the next, say, 40–50 years that the likely increase in intense and frequent wildfires doesn’t end up prolonging the ozone hole?”

Bloomberg

Prof. Kerry Emanuel and First Street Foundation have found that based on warming climate conditions and patterns, future storms will increase in intensity and travel farther north up the East Coast, reports Leslie Kaufman and Eric Roston for Bloomberg.

CNN

Prof. Kerry Emanuel speaks with CNN reporters Ella Nilsen and Renée Rigdon about future hurricane trends. “The bottom line is the models that are being used by the existing [catastrophe] modeling industry are based strictly on historical statistics,” says Emanuel. “The historical record isn’t very long, and it isn’t very good when you get back to before 1970.”

The Verge

The Verge reporter Justine Calma writes that a new study by MIT researchers finds that while wind energy has measurably improved air quality, only 32% of those benefits reached low-income communities. “The research shows that to squeeze out the greatest health benefits, wind farms need to intentionally replace coal and gas power plants,” writes Calma. “And to clean up the most polluted places — particularly those with more residents of color and low-income households — those communities need to be in focus when deploying new renewable energy projects.”

HealthDay News

A new study by MIT researchers finds that increased usage of wind power is improving air quality in parts of the U.S., however only a third of the health benefits are being seen in disadvantaged communities, reports Alan Mozes for HealthDay. "Going forward," explains Prof. Noelle Selin, "more targeted policies are needed to reduce the disparities at the same time, for example by directly targeting [fossil fuel] sources that influence certain marginalized communities."

The Hill

Increased usage of wind energy has led to health benefits, but does not affect all communities equally, reports Saul Elbein for The Hill. The researchers found that in order to increase the benefits of wind energy, “the electricity industry would have to spin down the most polluting plants at times of high wind-supply — rather than their most expensive ones,” writes Elbein.

Salon

A new study by MIT scientists finds that Earth can self-regulate its temperature thanks to a stabilizing feedback mechanism that works over hundreds of thousands of years, reports Troy Farah for Salon. “The finding has big implications for our understanding of the past, but also how global heating is shaping the future of our home world,” writes Farah. “It even helps us better understand the evolution of planetary temperatures that can make the search for alien-inhabited exoplanets more fruitful.”

The Washington Post

Researchers at MIT and Stanford have developed a new tool that can better map the inside of an asteroid that risks crashing into earth, writes Pranshu Verma for The Washington Post. “Understanding the interior," said Prof. Julian De Witt, "helps us understand the extent to which close encounters could be of concern, and how to deal with them.”

Axios

A new tool developed by researchers at MIT and Stanford could help map out the interior of asteroids, reports Alison Synder and Miriam Kramer for Axios. This could make “it easier to know the most effective way of throwing them off-course,” writes Synder and Kramer.

Associated Press

Prof. Susan Solomon speaks with Associated Press reporter Seth Borenstein about the Antarctic ozone hole. “’Ozone depletion starts LATER and takes LONGER to get to the maximum hole and the holes are typically shallower’ in September, which is the key month to look at ozone recovery, not October,” says Solomon.

CBS News

Prof. Richard Binzel speaks with CBS News reporter David Pogue about asteroids and the Torino scale, a 10-point danger scale for asteroids that he created. "All the objects [asteroids] we know of today reside at zero or one, which simply means they're so small that they don't matter, or that we know for sure there's no impact possibility," says Binzel.

The Atlantic

Prof. Kerry Emanuel discusses the impact climate change has on hurricanes, reports Robinson Meyer for The Atlantic. “First of all, you can have more intense hurricanes in a warmer climate. That finding goes back well over 30 years now,” says Emanuel. “For that reason we expect to see more of the highest-category storms—the Cat 3s, Cat 4s, Cat 5s, more of the Ian-style storms.”

Newsweek

Prof. Kerry Emanuel speaks with Newsweek reporter Pandora Dewan about Hurricane Ian and its correlation to climate change, reports Pandora Dewan for Newsweek. “What worries people in my profession is the confluence of two trends," says Emanuel. "One is demographic, one is nature. The number of people exposed to hurricanes has tripled since 1970 [as] people are moving in droves to hurricane-prone regions. Then the climate is changing, and that is demonstrably increasing the incidence of high-end storms like Ian."