Skip to content ↓

Bake your own robot

New algorithms and electronic components could enable printable robots that self-assemble when heated.
Watch Video
Press Inquiries

Press Contact:

Abby Abazorius
Phone: 617-253-2709
MIT News Office

Media Download

Before-and-after stills from the video "An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating." The left image shows the self-folding sheet for a humanoid shape, while the right image shows the completed self-folded humanoid shape.
Download Image
Caption: Before-and-after stills from the video "An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating." The left image shows the self-folding sheet for a humanoid shape, while the right image shows the completed self-folded humanoid shape.
Credits: Courtesy of the researchers

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
Before-and-after stills from the video "An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating." The left image shows the self-folding sheet for a humanoid shape, while the right image shows the completed self-folded humanoid shape.
Caption:
Before-and-after stills from the video "An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating." The left image shows the self-folding sheet for a humanoid shape, while the right image shows the completed self-folded humanoid shape.
Credits:
Courtesy of the researchers

Printable robots — those that can be assembled from parts produced by 3-D printers — have long been a topic of research in the lab of Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

At this year’s IEEE International Conference on Robotics and Automation, Rus’ group and its collaborators introduce a new wrinkle on the idea: bakable robots.

In two new papers, the researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.

One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.

The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.

“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” Rus says. “So far, we have tackled some subproblems in the space, and one of the subproblems is this end-to-end system where you have a picture, and at the other end, you have an object that realizes that picture. And the same mathematical models and principles that we use in this pipeline we also use to create these folded electronics.”

Both papers build on previous research that Rus did in collaboration with Erik Demaine, another professor of computer science and engineering at MIT. This work explored how origami could be adapted to create reconfigurable robots.

All the angles

The key difference in the new work, explains Shuhei Miyashita, a postdoc in Rus’ lab and one of her co-authors on both papers, is a technique for precisely controlling the angles at which a heated sheet folds. Miyashita sandwiches a sheet of polyvinyl chloride (PVC) between two films of a rigid polyester riddled with slits of different widths. When heated, the PVC contracts, and the slits close. Where edges of the polyester film press up against each other, they deform the PVC.

Imagine, for instance, a slit in the top polyester film and another parallel to it in the bottom film. But suppose, too, that the slit in the top film is narrower than that on the bottom. As the PVC contracts, the edges of the top slit will press against each other, but there will still be a gap between the edges of the bottom slit. The entire sheet will then bend downward until the bottom edges meet as well. The final angle is a function of the difference in the widths of the top and bottom slits.

But producing the pattern of slits is not as simple as just overlaying them on an origami crease pattern and adjusting the widths accordingly, Rus says. “You’re doing this really complicated global control that moves every edge in the system at the same time,” she says. “You want to design those edges in such a way that the result of composing all these motions, which actually interfere with each other, leads to the correct geometric structure.”

ByoungKwon An, another of Rus’ students, is lead author on the paper describing the system for interpreting 3-D images. He’s joined by Rus, Miyashita, Demaine, and five other researchers both at MIT and in the lab of professor Robert Wood at Harvard University.

Current events

Miyashita is lead author on the other paper, whose coauthors include, in addition to Rus, researchers at the University of Zurich and the University of Tokyo.

In that paper, the researchers describe using a polyester coated with aluminum to create foldable electronic components. Miyashita designed those components by hand, since it was necessary to prescribe not just their geometric properties but also their electrical properties. The sensor Miyashita designed looks kind of like a small accordion. Each of the accordion folds contains a separate resistor, and when the folds are compressed, the total resistance changes proportionally, with a measurable effect on a current passing through the sensor.

Video thumbnail Play video
New algorithms and electronic components could enable printable robots that self-assemble when heated.

The actuator — which would enable a robot to move — is a foldable coil, which would need to be augmented with a pair of iron cylinders that could be magnetized by an electrical current. Aluminum isn’t a good enough conductor to yield an actuator that exerts much force, but a copper-coated polyester should do the trick.

Press Mentions

Wired

In a piece for Wired, Olivia Solon writes about how Professor Daniela Rus’ research group has developed, “a system of 2D patterns cut into plastic that can self-fold under heat into 3D shapes.” 

New Scientist

New Scientist writer Aviva Rutkin reports that MIT researchers have developed a new process in which flat cut-outs are able to self-assemble into robots when heated. "What we would like is to provide design tools that allow people who are not experts to create their own machines," explains Prof. Daniela Rus. 

United Press International (UPI)

“When it comes out of the 3D printer, the robot is just a sheet made of a polymer called polyvinyl chloride, or PVC. The sheet is sandwiched between two rigid polyester films. Slits cut into the films affect how the PVC sheet will fold when it is heated,” writes UPI reporter Brooks Hays of new work with self-assembling robots. 

Forbes

Forbes reporter Jasper Hamill describes a new technique developed by Prof. Daniela Rus that allows robots to self-assemble when heated. “The components can be produced simply by heating up the plastic, which is cleverly designed so it folds itself into the right form,” writes Hamill. 

NBC News

“Eventually she can see a world where people can use an algorithm to analyze an image, create blueprints and print out fully functional robots. This could be a big deal in manufacturing, health care and, yes, toys,” writes NBC News writer Keith Wagstaff of Professor Daniela Rus’ work with self-assembling robots. 

Related Links

Related Topics

Related Articles

More MIT News