Skip to content ↓

The surprising physics of cats’ drinking

A new study reveals that even the way cats lap up liquid displays the perfect balance for which they’re known.
How do cats lap? Cutta Cutta is about to take a drink.
Caption:
How do cats lap? Cutta Cutta is about to take a drink.
Credits:
Photo: Pedro Reis, Micaela Pilotto and Roman Stocker

Cat fanciers appreciate the gravity-defying grace and exquisite balance of their feline friends. But do they know that those traits extend even to the way cats lap milk?

Researchers analyzed the way domestic and big cats lap and found that felines of all sizes take advantage of a perfect balance between two physical forces. The results were published in the Nov. 11 online edition of the journal Science.

It was known that when cats lap, they extend their tongues straight down toward the bowl with the tip of the tongue curled backwards, so that the top of the tongue touches the liquid first. That insight came from a 1940 film of a cat lapping milk, made by Harold “Doc” Edgerton, the MIT electrical engineering professor who first used strobe lights in photography to stop action.

But recent high-speed videos made by MIT, Virginia Tech and Princeton researchers reveal that the top of the cat’s tongue is the only surface to touch the liquid. Cats, unlike dogs, don’t dip their tongues into the liquid like ladles. The cat’s lapping mechanism is far more subtle and elegant. The smooth tip of the tongue barely touches the surface of the liquid before the cat draws its tongue back up. As it does so, a column of liquid forms between the moving tongue and the liquid’s surface. The cat then closes its mouth, pinching off the top of the column for a nice drink, while keeping its chin dry.

When the cat’s tongue touches the liquid surface, some of the liquid sticks to it through liquid adhesion, much as water adheres to a human palm when it touches the surface of a pool. But the cat draws its tongue back up so rapidly that for a fraction of a second, inertia — the tendency of the moving liquid to continue following the tongue — overcomes gravity, which is pulling the liquid back down toward the bowl. The cat instinctively knows just when this delicate balance will change, and it closes its mouth in the instant before gravity overtakes inertia. If the cat hesitated, the column would break, the liquid would fall back into the bowl, and the tongue would come up empty.

While the domestic cat averages about four laps per second, the big cats, such as tigers, know to slow down. Because their tongues are larger, they lap more slowly to achieve the same balance of gravity and inertia.

Ready for my close-up

Roman Stocker of MIT’s Department of Civil and Environmental Engineering (CEE), Pedro Reis of CEE and the Department of Mechanical Engineering, Sunghwan Jung of Virginia Tech and Jeffrey Aristoff of Princeton analyzed high-speed digital video of domestic cats, including Stocker’s family cat and a range of big cats (a tiger, a lion and a jaguar), thanks to a collaboration with Zoo New England’s mammal curator John Piazza and assistant curator Pearl Yusuf. And, in what could be a first for a paper published in Science, the researchers gathered additional data by analyzing existing YouTube.com videos of big cats lapping.

With these videos slowed way down, the researchers established the speed of the tongues’ movements and the frequency of lapping. Knowing the size and speed of the tongue, the researchers then developed a mathematical model of lapping, which involves the ratio between gravity and inertia. For cats of all sizes, that number is almost exactly one, indicating a perfect balance.


Cutta Cutta drinking
Video: Pedro M. Reis, Sunghwan Jung, Jeffrey M. Aristoff and Roman Stocker

To better understand the subtle dynamics of lapping, they also created a robotic version of a cat’s tongue that moves up and down over a dish of water, allowing them to systematically explore different aspects of lapping and, ultimately, identify the mechanism underpinning it.

“This work is as splendid a case as I can recall of things looked at but seen in a way that no one else has seen,” says Professor Steven Vogel of Duke University, a biomechanics researcher who was not involved in the project. “Now that I’ve been clued in, I can report that what these people describe and explain agrees entirely with my own casual observations of the lapping action of the feline in charge of this establishment.”

The lapping research began three years ago, when Stocker, who studies the biophysics of the movements of ocean microbes, was watching his cat drink. That cat, 8-year-old Cutta Cutta, stars in the researchers’ videos and still pictures. And like a lot of movie stars (Cutta Cutta means “stars stars” in an Australian aboriginal language), he doesn’t mind making people wait. Stocker and Reis spent hours at the Stocker home with their cameras trained on Cutta Cutta’s bowl, waiting for him to drink.

“Science allows us to look at natural processes with a different eye and to understand how things work, even if that’s figuring out how my cat laps his breakfast,” Stocker says. “This project for me was a high point in teamwork and creativity. We did it without any funding, without any graduate students, without much of the usual apparatus that science is done with nowadays.”

“Our process in this work was typical — archetypal, really — of any new scientific study of a natural phenomenon. You begin with an observation and a broad question — ‘How does the cat drink?’ — and then try to answer it through careful experimentation and mathematical modeling,” says Reis, a physicist who works on the mechanics of soft solids. “To us, this study provides further confirmation of how exciting it is to explore the scientific unknown, especially when this unknown is something that’s part of our everyday experiences.”

Besides their obvious enthusiasm for the work itself, the researchers are also delighted that it builds on Edgerton’s 1940 film of the cat lapping. That film appeared as part of an MGM-released movie called Quicker’n a Wink, which won an Academy Award in 1941. Reis and Stocker say they’re moving on to other collaborations closer to their usual areas of research. But their feline friend Cutta Cutta might have Oscar hopes.


Press Mentions

KQED

Joshua Cassidy of KQED highlights an MIT study about how cats use their tongues to drink. The researchers created a model that mimics how cats drink and determined that “house cats tend to lap water about four times a second while larger species of cats, like lions and tigers, lap slower as their body mass increases.”

Related Links

Related Topics

More MIT News