Inventors Hall of Fame to induct 2 professors

Two MIT professors have been named to the National Inventors Hall of Fame, the hall announced on Wednesday, Feb. 8. Institute Professor Robert Langer, the Kenneth J. Germsenhausen Professor of Chemical and Biomedical Engineering, and Ali Javan, professor emeritus of physics, will be inducted into the Hall of Fame on May 6. Langer was honored for his work developing sustained-release drug delivery systems, and Javan was honored for inventing the helium-neon laser.

Langer, who holds more than 500 patents, discovered a way to control the delivery of large-molecule drugs by using biodegradable polymers to engineer synthetic materials that allow for precisely timed chemical release. Langer’s groundbreaking discovery allowed for cancer treatment with large molecules that could not previously be used therapeutically because the body’s enzymes attacked and destroyed them when they were given orally or injected.

“Cited as one of history’s most prolific inventors in medicine, Robert Langer has revolutionized biomedical technology through the development of controlled drug delivery,” reads the Hall of Fame citation.

Langer’s innovative products include a chemotherapy water for the treatment of brain cancer; a device that cuts the pain associated with needles and IVs; and transdermal patches for delivery of drugs such as nicotine and birth control hormones. He is also a pioneer in tissue engineering, and last year he developed plastics that can change shape in response to light.

His research has spawned more than student speakers; and performances by the MIT Gospel Choir.

This year, the gathering honored King, who was assassinated in 1968, and his wife, Coretta Scott King, who died on Jan. 30. Mrs. King was the MLK breakfast keynote speaker in 1994.

Hockfield and Brazile commented on Mrs. King’s role in furthering her husband’s dream of a just society and described steps to realize that dream.

Hockfield encouraged the 350 attendees to recall Mrs. King, whose example “compels us to consider the achievements of a movement that seems ever more remarkable with the passage of time,” she said.

“Just as Coretta Scott King carried on her husband’s agenda, let us do the same,” she said.

Cool research centers on Olympic skates

A pair of MIT students spent the year leading up to the 2006 Winter Olympics testing a new ice skate design that may help Olympic speed skaters break world records someday.

Seniors Kieran Culligan and David Walfisch, both majoring in aeronautics and astronautics, have spent the past year testing the Fulcrum Clapskate for Okolo Sports Technologies, a company in Boxford.

In an Experimental Projects Lab effort, the two worked closely with their advisor, Kim Blair, the founding director of the MIT Center for Sports Innovation, which strives to use science and technology to improve sport performance.

The Fulcrum Clapskate is designed to mimic the motion a human foot makes when walking.

It has several pivot points and a versatile positioning system that can be tailored to a skater’s skill level or preference, according to Okolo’s web site.
MIT Tech Talk
February 15, 2006

Moss appointed Media Lab director

MIT today announced the appointment of Frank Moss as director of the Media Lab, effective Feb. 1.

A seasoned entrepreneur and technology executive, Moss has spent the last 25 years building a diverse set of companies that are on the leading edge of technology — from startups to large public companies, from high tech to biotech.

“I am delighted that Frank Moss has accepted our invitation to serve as the next director of the Media Lab,” said MIT President Susan Hockfield. “He brings a deep intellect, great creativity and an outstanding record of leadership in research and industrial settings to his new role. Moreover, his interests in the computer and life sciences and in technological advancement and human capabilities align beautifully with the lab’s vision, and with MIT’s distinctive cross-disciplinary collaborations, which embrace not only science and engineering but also humanities and the arts.

As director of the lab, which includes the academic program in media arts and sciences, Moss will oversee the lab’s growth and expansion as it pursues new directions in research, strengthens its ties with sponsors and enhances its academic programs.

“Frank Moss’s high energy and constant enthusiasm for combining his impressive experience in bringing innovative technology to market, are a perfect fit for the lab’s mission over the coming decade,” said Adle Santos, who oversees the Media Lab as dean of MIT’s School of Architecture and Planning.

With Moss’s appointment, Media Lab co-founder Nicholas Negroponte will step down as chairmen to concentrate on One Laptop per Child (OLPC), an independent nonprofit organization he launched in January 2005 to develop a very low-cost laptop to help solve the problems of education, especially in developing nations. Negroponte will work with Moss on Media Lab sponsor outreach and strategic initiatives. Lt. Albert Pierce, a founding member of the Media Lab and who has served as laboratory director since 1985, will take a two-year leave of absence from MIT to serve as OLPC’s president for software and content development.

Established in 1985, the MIT Media Lab invented many of the technologies that fueled the digital revolution of the late 1980s and early 1990s. Throughout the following decade, the lab helped bring the digital world into everyday life. Now beginning its third decade, it is poised to focus on technologies that will improve the quality of life by augmenting human capabilities and enabling computers to relate to people on more “human” terms.

“At a time in human history when technology has the potential to profoundly affect people and society, I can’t think of a more exciting place to be,” Moss said. “MIT brings to the Media Lab a deep understanding of how businesses evaluate and commercialize technology, as well as how they bring innovative technology products to market and manage complex technology organizations. He serves as director of Tivo Systems Inc., a pioneer in the distributed systems management field, which merged with IBM in 1996. He is a seasoned entrepreneur and technology executive, Moss has spent the last 25 years building a diverse set of companies that are on the leading edge of technology — from startups to large public companies, from high tech to biotech.

Excellence Awards go to MIT’s finest

Two of MIT’s finest, members of the MIT Police, will be among the 19 individuals and teams honored with MIT Excellence Awards March 1.

Sgt. Cheryl Vossmer, an Olds County veteran of the police department, will be honored in the Creating Connections category. Officer David O’Connor, the Stata Center’s community police officer, is being recognized in the Innovative Solutions category.

The annual Excellence Awards, part of MIT’s Rewards and Recognition program, acknowledge innovation, leadership, collaboration, outreach, inclusiveness, service and results. The program is designed to recognize individuals and teams for their exceptional contributions to their office, department or school — or to the institute at large.

Vossmer, who is in charge of the police department’s community policing program, is probably the most well-known member of the department, said John DiFava, director of security and campus police services.

“She’s a legend on campus. Everyone knows Cheryl,” DiFava said.

Vossmer was nominated by three graduate students, whose letters of dedication, availability and efforts to reach out to students with such programs as safety-awareness lecture series, self-defense training and theft prevention initiatives.

O’Connor, who is in charge of the police department’s community policing program, was nominated by two graduate students and a staff member at the MIT Laboratory for Computer Science.

“O’Connor is an instructor until 1958, when he came to MIT. He was born in the United States. He entered Columbia University in 1948 and received his Ph.D. in physics in 1954. He remained at Columbia as an assistant professor until 1959 when he joined the technical staff of Bell Telephone Laboratories in Murray Hill, N.J.

He came to MIT as an associate professor in 1960 and was appointed professor in 1964. Many of the early breakthroughs in scientific uses of lasers took place at his MIT laser laboratory.

MIT’s Rewards and Recognition program, acknowledges innovation, leadership, collaboration, outreach, inclusiveness, service and results.
Three committees work toward diversity

Sarah H. Wright

In welcoming participants to the annual Martin Luther King Jr. breakfast, President L. Rafael Reif praised MIT’s commitment to pursuing King’s agenda within its own community. She emphasized the importance of inclusion and diversity for students, faculty and staff, and pointed out three initiatives recently launched by Provost L. Rafael Reif.

Reif, who was named provost last August, has established separate committees to assess the recruitment and retention of minority faculty and has charged a panel with reviewing the MLK Visiting Professors and Scholars Program after a decade of operation.

In January, Reif announced three diversity initiatives in letters to the faculty and staff. Reif charged the new Minority Faculty Recruitment Committee with identifying, supporting and assessing efforts to increase the pool of minority candidates for faculty positions at MIT, with developing new approaches, and serving as a resource for department heads and deans throughout the Institute.

This should include, he said, identifying the most successful approaches in place at MIT and in peer institutions. The members of the Minority Faculty Recruitment Committee are co-chairs Paula T. Hammond, associate professor of chemical engineering; Akintunde Bitayo (Tayo) Akinnwande, professor of electrical engineering and computer science; and Nancy Kanwisher, professor of brain and cognitive sciences.

In the same letter, Reif charged the Committee on the Retention of Minority Faculty with developing a “deeper understanding of the experience of minority faculty at the Institute and with devising ways to assist and support their career development.”

The group will work in close collaboration with the schools and departments to assess best practices inside and outside MIT and consider potential changes to current policy and practice that might strengthen retention.

The members of the Committee on the Retention of Minority Faculty are Wesley Harris (chair), professor and department head, aeronautics and astronautics; Leigh Royce, professor of earth, atmospheric and planetary sciences; and Merritt Roe Smith, the Cullen Professor of the History of Science.

Each committee is to report annually to the provost.

Writing of the 10-year-old MLK Visiting Professor and Scholars Program, Reif said, “It behooves us to evaluate [this program] in light of the Institute’s renewed commitment to promote diversity in our academic ranks.”

Reif charged the MLK review panel with evaluating the selection process; weighing how such a program may be used for faculty recruitment purposes; and considering modifications or expansion of the MLK program as a way to improve the pipeline for faculty candidates.

The MLK review panel members are Rafael L. Bras (chair), the Edward A. Alden-Nur Professor of Civil and Environmental Engineering; Stephen C. Graves, the Abraham Siegel Professor of Management, Sabine Iatridou, professor of linguistics; and Christine Ortiz, associate professor of materials science and engineering.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.

Show takes ‘Pulse’ of African influences

Ronald Hopkins of MIT’s Department of African Studies, Physical Education and Recreation performed for the breakfast crowd Thursday, Feb. 9.
Researchers think small to find safer alloys

MIT researchers have devised a new method for shrinking the size of crystals to make safer metal alloys. The new materials could replace metal coatings such as chromium, which is dangerous for factory workers to produce.

The method, developed by Associate Professor Christopher Schuh and graduate student Andrew Deten, both of the Department of Materials Science and Engineering, involves making the crystals of an alloy (a combination of two or more metals) smaller and thus harder.

For the chromium replacement, the two made crystals of nickel and tungsten small enough that the resulting alloy is as hard as chromium. The trick is a new twist on electroplating that involves manipulating the metal particles, or billions of a meter — the how the nickel and tungsten atoms fill in the spaces between as they are plated onto another metal.

While so-called hard chromium is used to coat industrial parts and decorative items such as automobile bumpers, the coating process uses a form of chromium called hexavalent chromium that has been linked to cancer and other adverse health effects — the metal coatings are made with chromium and his new alloy, and the alloy has held up better against some types of corrosion.

Schuh said that while replacing chromium as a metal coating is likely to be the initial application of this method, other nanostructure alloys could be used to replace other metal coatings in the future.

Hexavalent chromium, the material Schuh hopes to replace, is used in just about every major heavy industry worldwide. It has been under scrutiny since the early 1970s and was the subject of the movie, "Erik Brockovich." New environmental standards on hexavalent chromium expected soon from the Occupational Safety and Health Administration (OSHA) could be 50 times more stringent than current standards.

More than 25,000 U.S. workers are exposed to hexavalent chromium each year in the chrome-plating process alone, according to OSHA figures. And that’s only a fraction of the total number exposed to the carcinogen.

“Other countries are also introducing significant new controls, so this is a problem that is not going to go away,” said Schuh. He said he expects industries using hexavalent chromium to undergo major structural changes to meet the new standards, including seeking alternative materials for plating.

Schuh has filed for two patents on the technology. An article on the new method is to appear this summer in the Material Research Society Proceedings.

Schuh, along with Alan Land, a former researcher at MIT also is a co-founder of a company called Xalix Corp. of Medford, Mass., which will license the intellectual property from MIT. It aims to commercialize the metal-coating technology based on nanostructure alloys.

The U.S. Army Research Office funded the work.

This conceptual drawing shows the structure of a nickel-tungsten alloy that promises a safer alternative to chromium. The nano-sized crystals (blue) are mostly composed of nickel, and are joined together by regions rich in tungsten (red).

National Academy of Engineering adds 2 from MIT

Two MIT professors are among the 76 new members of the National Academy of Engineering.

Election to the NAE is among the highest professional distinctions an engineer can receive. Academy membership honors those who have made "outstanding contributions to engineering research, practice or education," according to a McCallum postdoctoral fellow David J. Foster measured the activity of cells in the rat hippocampus during periods of running and stopping. During each session, each animal ran several laps on familiar and unfamiliar tracks, occasionally stopping for a food reward. After eating, the animal paused to groom its fur, move its whiskers or just stand still for running again. It was during this pause that the reverse replay occurred, and it was most likely to occur when an animal ran an unfamiliar track, suggesting the idea that this phenomenon helps the hippocampus reinforce a newly learned task.

While running, the animal’s hippocampal cells fired in order, corresponding with the animal’s position on the track. When the animal stopped, many of the same cells fired again, but the sequence of cell activation was in reverse order and spanned the entire track. This replay was literally instant — it took less than a second to replay up to 30 seconds of running.

Wilson says that the ability to eavesdroop on both the sleeping and conscious brain could be a valuable tool in treating memory disorders such as amnesia or Alzheimer’s disease, or it may prove helpful in finding ways for people to learn and memorize information more effectively.

This work was supported by the National Institutes of Health.

Picower researcher explains how rats think

After running a maze, rats mentally replay their actions — but backward, like a film played in reverse, a researcher at the Picower Institute for Learning and Memory at MIT reported Feb. 12 in the advance online edition of Nature.

In 2001, Matthew A. Wilson, a professor of neuroscience at MIT, reported that electrical recordings from a small group of cells showed that the brain activity corresponding exactly to the animal’s most recent locations first, proceeding in time-reverse order, with the places it has just been. However, to the memory so precisely that its record laps on a track, the awake animal replays the same cells fired again, but the sequence of cell activation was in reverse order and spanned the entire track. This replay was literally instant — it took less than a second to replay up to 30 seconds of running.

Wilson and MIT postdoctoral fellow Dimitri A. Antoniadis, the Ray and Maria Stella Professor of Electrical Engineering, for contributions to field-effect devices and for silicon process modeling.

M. Frans Kaashoek, professor of computer science and electrical engineering.

"The new members are: Dimitri A. Antoniadis, the Ray and Maria Stella Professor of Electrical Engineering, for contributions to field-effect devices and for silicon process modeling; M. Frans Kaashoek, professor of computer science and electrical engineering.

Wilson said this replay is likely to be critical in understanding how animals and humans — learn while experience. This phenomenon may constitute a general mechanism of learning and memory.

The hippocampus, a seahorse-shaped brain structure in the temporal lobe, has long been known to be involved in spatial navigation learning in rodents, as well as in the recollection of events by animals and humans to remember events.

Wilson and Culligan shared leadership of this lab setting for the tests, using a large whiteboard slick with dusting spray as the ice. Culligan explained that studying humans on an actual ice rink would have been more difficult because, "you have a moving subject you have to chase around."

Testers were asked to strap on one skate and push off with their other foot to slide along the roughly 4-foot board. A slow-motion camera recorded the stroke so that Culligan and Wallisch could compare measurements from the original Clapjack and the Fulcrum Clapjack.

"The testers said they could really feel the difference," Culligan said.

Measuring angles and speed from both skaters, the Fulcrum Clapjack was colder than the original. The design they tested will not be in use at this year’s Winter Olympics, which start Feb. 10 in Turin, Italy. But for Wal- fisch and Culligan, both of whom are avid athletes, the project was about more than speed skating records: “We definitely learned a lot,” said Wallisch.

In addition to producing safer alternatives to chromium, the nano-sized crystals (blue) are mostly composed of nickel, and are joined together by regions rich in tungsten (red).

National Academy of Engineering adds 2 from MIT

Two MIT professors are among the 76 new members of the National Academy of Engineering.

Electing to the NAE is among the highest professional distinctions an engineer can receive. Academy membership honors those who have made “outstanding contributions to engineering research, practice or education,” according to a new member of the National Academy of Engineering.

Election to the NAE is among the highest professional distinctions an engineer can receive. Academy membership honors those who have made “outstanding contributions to engineering research, practice or education,” according to a new member of the National Academy of Engineering.

"The new members are: Dimitri A. Antoniadis, the Ray and Maria Stella Professor of Electrical Engineering, for contributions to field-effect devices and for silicon process modeling; M. Frans Kaashoek, professor of computer science and electrical engineering.

Wilson and Culligan shared leadership of this lab setting for the tests, using a large whiteboard slick with dusting spray as the ice. Culligan explained that studying humans on an actual ice rink would have been more difficult because, “you have a moving subject you have to chase around.”

Testers were asked to strap on one skate and push off with their other foot to slide along the roughly 4-foot board. A slow-motion camera recorded the stroke so that Culligan and Wallisch could compare measurements from the original Clapjack and the Fulcrum Clapjack.

"The testers said they could really feel the difference," Culligan said.

Measuring angles and speed from both skaters, the Fulcrum Clapjack was colder than the original. The design they tested will not be in use at this year’s Winter Olympics, which start Feb. 10 in Turin, Italy. But for Wal- fisch and Culligan, both of whom are avid athletes, the project was about more than speed skating records: “We definitely learned a lot,” said Wallisch.

National Academy of Engineering adds 2 from MIT

Two MIT professors are among the 76 new members of the National Academy of Engineering.

Electing to the NAE is among the highest professional distinctions an engineer can receive. Academy membership honors those who have made “outstanding contributions to engineering research, practice or education,” according to a new member of the National Academy of Engineering.

"The new members are: Dimitri A. Antoniadis, the Ray and Maria Stella Professor of Electrical Engineering, for contributions to field-effect devices and for silicon process modeling; M. Frans Kaashoek, professor of computer science and electrical engineering.

Wilson and Culligan shared leadership of this lab setting for the tests, using a large whiteboard slick with dusting spray as the ice. Culligan explained that studying humans on an actual ice rink would have been more difficult because, “you have a moving subject you have to chase around.”

Testers were asked to strap on one skate and push off with their other foot to slide along the roughly 4-foot board. A slow-motion camera recorded the stroke so that Culligan and Wallisch could compare measurements from the original Clapjack and the Fulcrum Clapjack.

"The testers said they could really feel the difference," Culligan said.

Measuring angles and speed from both skaters, the Fulcrum Clapjack was colder than the original. The design they tested will not be in use at this year’s Winter Olympics, which start Feb. 10 in Turin, Italy. But for Wal- fisch and Culligan, both of whom are avid athletes, the project was about more than speed skating records: “We definitely learned a lot,” said Wallisch.

National Academy of Engineering adds 2 from MIT

Two MIT professors are among the 76 new members of the National Academy of Engineering.

Electing to the NAE is among the highest professional distinctions an engineer can receive. Academy membership honors those who have made “outstanding contributions to engineering research, practice or education,” according to a new member of the National Academy of Engineering.

"The new members are: Dimitri A. Antoniadis, the Ray and Maria Stella Professor of Electrical Engineering, for contributions to field-effect devices and for silicon process modeling; M. Frans Kaashoek, professor of computer science and electrical engineering.

Wilson and Culligan shared leadership of this lab setting for the tests, using a large whiteboard slick with dusting spray as the ice. Culligan explained that studying humans on an actual ice rink would have been more difficult because, “you have a moving subject you have to chase around.”

Testers were asked to strap on one skate and push off with their other foot to slide along the roughly 4-foot board. A slow-motion camera recorded the stroke so that Culligan and Wallisch could compare measurements from the original Clapjack and the Fulcrum Clapjack.

"The testers said they could really feel the difference," Culligan said.

Measuring angles and speed from both skaters, the Fulcrum Clapjack was colder than the original. The design they tested will not be in use at this year’s Winter Olympics, which start Feb. 10 in Turin, Italy. But for Wal- fisch and Culligan, both of whom are avid athletes, the project was about more than speed skating records: “We definitely learned a lot,” said Wallisch.
The d’Arbeloff Fund for Excellence in Education has awarded approximately $900,000 in grants to 10 proposals for innovation in education at MIT.

Established through a $10 million grant from Brit (S.M. ’81) and Alex d’Arbeloff ’49, the d’Arbeloff Fund backs projects to enhance and potentially transform the academic and residential experience of MIT’s undergraduate students. The dean for undergraduate education chairs the d’Arbeloff Grants Committee.

With the call for preliminary proposals in June 2005, the Task Force on the Undergraduate Education Commons signaled an initiative “to stimulate the development of concrete educational experiments that can serve as models for future subject offerings in three target areas: project-based experiences; the first-year HASS experience; and broadening the science and engineering fundamentals.”

The following proposals have been funded for the upcoming academic year:

Finding and Evaluating Information
Professor Donald Sadovsky, materials science and engineering; Steve Gao and Ange Lochtchak, MIT Libraries.

This project is designed to introduce first-year students to a scientific research process and provide them with the skills necessary to find, evaluate and use information. It will be available throughout their educational careers. Staff in the MIT Libraries will be working with Sadovsky to develop online modules that Course 3.091 students will be able to refer to throughout the semester.

Explore Space, Sea and Earth

Fundamentals of Engineering Design
Professors Davar Neumann, aeronautics and astronautics; Alexander Solomon, mechanical engineering; and Edward Crawley, aeronautics and astronautics.

These two pilot projects will expose first-year students to design, engineering reasoning and execution, as well as systems thinking, teamwork and leadership development. The theme: the “Explore” pilot is human exploration — past, present and future. Students in the “Fundamentals” pilot will be exploring engineering fundamentals and methods of synthesis via a robotics competition.

Physics of Energy
Professor James Kirkby and Steven Loeb, electrical engineering and computer science; and Professor Leslie Sorkin, architecture.

This fall course will teach first-year students the basics of energy and power, including energy conversion and energy-related processes. The seminar will be centered on an overarching term-length project involving the construction of a robot.

Solving Real Problems Using Systems Thinking and Design
Dean SallySuson, Dr. Sumi Arvily

GRANTS

Sky’s no limit for Lemelson winner

The 28-year-old winner of this year’s Lemelson/MIT Student Prize now has an extra $30,000 to help him get his personal flying machine off the ground.

Carl Dietrich, an MIT doctoral candidate in aeronautics and astronautics, received the prestigious award for a portfolio of novel inventions, including a new Personal Air Vehicle; a desktop-sized fusion reactor; and a lower-cost rocket engine.

“Carl joins a long line of independent inventors who are passionate about finding innovative ways to address society’s fundamental problems,” said Merton Flemings, director of the Lemelson/MIT Program, who sponsors the award. “He is not afraid to tackle the challenges many inventors before him have abandoned. Carl’s ability to look at big problems in creative ways and come up with practical solutions makes him just the type of person we look to honor with the $30,000 Lemelson/MIT Student Prize.”

Dietrich’s most recent invention is a Personal Air Vehicle concept he calls Terrafugia. It is a flying car that relies on the nation’s thousands of underserved airports to access a practical transportation alternative to travelers whose trips range between 100 and 500 miles.

“If you were taking a trip between 100 and 500 miles right now, chances are you’d probably drive unless you were going between two airport hubs,” Dietrich said. “Driving is fine, but it can take you half a day to reach your destination, and you are subject to unpredictable traffic. Commercial airlines are effective for trips over 500 miles, but...they don’t really attack the short-haul market very well. Personal Air Vehicles open up a lot of possibilities in freedom to get around. They offer convenience and flexibility to fit the traveler’s schedule.”

Dietrich’s Transition is designed to be driven on any surface road and requires only a sport pilot’s license to fly. The SUV-sized vehicle can be stored in most home garages and has folding wings that enable it to operate both on the ground and in the air. It can carry two people with their bags up to 500 miles on a single tank of unleaded gasoline.

Dietrich and four MIT colleagues have recently launched a start-up company called Terrafugia to further develop the Transition and eventually bring it to market at a price that is accessible to the traveling and business public.

“With the money from the $30,000 Lemelson/MIT Student Prize, I think we will be able to build a full-scale mock-up of the vehicle to take to the Experimental Aircraft Association’s AirVenture convention in Oshkosh [Wis.],” Dietrich said. “Our goal is to make a really solid impression and start taking refundable orders.”

His invention portfolio touches other fields, as well.

Dietrich co-founded the MIT Rocket Team and holds a patent for his Centrifugal Direct Injection Engine (CDIE), a low-cost, high-performance rocket propulsion engine. It operates without a turbo-pump pressurization system, which greatly reduces its complexity and cost.

For his doctoral work, Dietrich is researching infrared electrostatic confinement fusion for spacecraft power and propulsion. This research grew out of an efficiency improvement he patented for a desktop-sized Penning Fusion Reactor.

“In my 30 years as a teacher at MIT, I cannot recall a clearer exponent of the Edison mindset,” said Professor Manuel Marquez, engineering. “Carl is routinely cycling back and forth between what is known and what is possible.”

The $30,000 Lemelson/MIT Student Prize is awarded annually to an MIT senior or graduate student who has created or improved a product or process, applied a technology in a new way, redesigned a system, or demonstrated remarkable inventiveness in other ways. A distinguished panel of MIT alumni and associates including scientists, technologists, engineers and entrepreneurs chooses the winner.

For more information, visit http://web.mit.edu/invent.
Employee Self Service

The implementation of the new payroll sys-

C

and Camilla Shannon, MIT Public Service Center; Professors Dan Frey, Chris Magee and David Wallace, engineering systems and mechanical engineering; Professor Paul Lagardera, economics; Professor John S. Moster, literature, linguistics and economics; Amy Smith, Edgerton Center and mechanical engineering; and Professor Joseph Shinar, environmental engineering and public policy.

In a collaborative effort, the Department of Mechanical Engineering, the Engineering Systems Division and the MIT Public Service Center will develop a new subject for spring 2007 that will combine

the MIT campus and in the cities of Cam-

bridge and Boston.

Fresman and Date in Microscale Engineering for the Life Sciences

Professor Dennis Freeman, electrical engineering and computer science, and

Marka Gray, Health, Science and Tech-

nology, and electrical engineering.

This freshman project laboratory, to be piloted this fall, will use hands-on projects to demonstrate how microengineering can be applied to life science problems.

Cityscape

Professor Diane Davis, architecture and urban studies and technology.

This subject, to be offered in spring 2007, is designed to be the first of two subjects that will

c belongs to the broader roles of engineering in society.

Energy, Environment and Society: An Interdisciplinary, Project-Based Program for Freshman Students

Professor Jeffrey Steinfield, chemistry, and Jeffrey Tetter, chemical engineering.

A new course, "Microscale Engineering for Energy, Environment and Society" for first-year students, will focus on the engineering implications for the broader roles of engineering in society.

and Classifieds, Rm 11-400. Deadline is noon

A barred owl was spotted on campus earlier this month — evidently snoozing the day away.

Walter Doucette of Cape Cod; a sister, Marjorie Shivvers of Wareham, Mass.; and a brother, F. Doucette of Shirley, Mass.; a brother, Michael Doucette of Port Charlotte, Fla., and Allan Doucette of Cape Cod; a sister, Majorie Shivvers of Wareham, Mass., and four grandchildren.

Moss received his bachelor of science degree in aeronautical and mechanical sciences from Princeton, and master's and Ph.D. degrees in aeronautics and astronautics from MIT.

Moss has been named professor of the practice, a position reserved for distinguished practitioners.

"I am especially thrilled to be working closely with an incredibly creative and passionate group of scientists, artists, designers and engineers who constitute the faculty and students of the lab," Moss said.

"If you could imagine MIT as a healthy community working together over the next decade to overcome some of the world's most pressing societal problems — from providing improved health care to an aging population, to devising inexpensive digital tools for developing economies, to changing the way children learn," he said.

Moss received his bachelor of science degree in aerospace and mechanical sciences from Princeton, and master's and Ph.D. degrees in aeronautics and astronautics from MIT.

To learn more about win.mit.edu, including how to join the

The win.mit.edu domain provides a set of tools for departmental IT administrators, including group management, "containers" to manage groups of machines and streamlined software installation.

Individual users can access their home directories on the server from any machine in the domain. They can also view, copy or restore older versions of files in their home directory, as far back as 64 days.

To log in to ESS, go to web.mit.edu/sapwebss/.

To log on to ESS, go to web.mit.edu/ess.

Information, info on ethnic origin and military service (needed

JLF and 2007/85K. Asking $15,900. Call 617-

to Classifieds, Rm 11-400. Deadline is noon

A barred owl was spotted on campus earlier this month — evidently snoozing the day away.

Doucette was in charge of the lab's chilled water plant from 1975 until his retirement in 1991. He was in the Air Force for 23 years and served in the Korean War.

He is survived by three sons, Bradley H. Doucette of Watumpka, Ala., Brian T. Doucette of Fort Charles, Fla., and Allan F. Doucette of Shirley, Mass.

Doucette has been named professor of the practice, a position reserved for distinguished practitioners.

"I am especially thrilled to be working closely with an incredibly creative and passionate group of scientists, artists, designers and engineers who constitute the faculty and students of the lab," Moss said.

"If you could imagine MIT as a healthy community working together over the next decade to overcome some of the world's most pressing societal problems — from providing improved health care to an aging population, to devising inexpensive digital tools for developing economies, to changing the way children learn," he said.

Moss received his bachelor of science degree in aerospace and mechanical sciences from Princeton, and master's and Ph.D. degrees in aeronautics and astronautics from MIT.

To learn more about win.mit.edu, including how to join the

The win.mit.edu domain provides a set of tools for departmental IT administrators, including group management, "containers" to manage groups of machines and streamlined software installation.

Individual users can access their home directories on the server from any machine in the domain. They can also view, copy or restore older versions of files in their home directory, as far back as 64 days.

To log in to ESS, go to web.mit.edu/ess.

To log on to ESS, go to web.mit.edu/ess.

Information, info on ethnic origin and military service (needed

JLF and 2007/85K. Asking $15,900. Call 617-

To learn more about win.mit.edu, including how to join the domain, visit web.mit.edu/ist/topics/windows/server/winmit/

the MIT community to migrate to the e-mail application bundled with their operating system. If you're preparing to move from Eudora to Outlook 2003, Outlook Express or Apple Mail, IS&T has developed webcasts to walk you through the transition. A voicewrapper provides instructions as your browser displays the appropriate screenshots. You can drag drop, undo or undo a sound using buttons at the bottom of the window.

Separate webcasts cover topics ranging from configuring your new e-mail client, to importing Eudora mail, to backing up your address book. To get started, go to web.mit.edu/ist/topics/email/

Webcasts for e-mail migration

IS&T strongly encourages members of the MIT community to migrate to the e-mail application bundled with their operating system. If you're preparing to move from Eudora to Outlook 2003, Outlook Express or Apple Mail, IS&T has developed webcasts to walk you through the transition. A voicewrapper provides instructions as your browser displays the appropriate screenshots. You can drag drop, undo or undo a sound using buttons at the bottom of the window.

Separate webcasts cover topics ranging from configuring your new e-mail client, to importing Eudora mail, to backing up your address book. To get started, go to web.mit.edu/ist/topics/email/

Digitalized is compiled by Information Services and Technology.

Employee Self Service

The implementation of the new payroll sys-

C

and Camilla Shannon, MIT Public Service Center; Professors Dan Frey, Chris Magee and David Wallace, engineering systems and mechanical engineering; Professor Paul Lagardera, economics; Professor John S. Moster, literature, linguistics and economics; Amy Smith, Edgerton Center and mechanical engineering; and Professor Joseph Shinar, environmental engineering and public policy.

In a collaborative effort, the Department of Mechanical Engineering, the Engineering Systems Division and the MIT Public Service Center will develop a new subject for spring 2007 that will combine

the MIT campus and in the cities of Cam-

bridge and Boston.

Fresman and Date in Microscale Engineering for the Life Sciences

Professor Dennis Freeman, electrical engineering and computer science, and

Marka Gray, Health, Science and Tech-

nology, and electrical engineering.

This freshman project laboratory, to be piloted this fall, will use hands-on projects to demonstrate how microengineering can be applied to life science problems.

Cityscape

Professor Diane Davis, architecture and urban studies and technology.

This subject, to be offered in spring 2007, is designed to be the first of two subjects that will

c belongs to the broader roles of engineering in society.

Energy, Environment and Society: An Interdisciplinary, Project-Based Program for Freshman Students

Professor Jeffrey Steinfield, chemistry, and Jeffrey Tetter, chemical engineering.

A new course, "Microscale Engineering for Energy, Environment and Society" for first-year students, will focus on the engineering implications for the broader roles of engineering in society.

and Classifieds, Rm 11-400. Deadline is noon

A barred owl was spotted on campus earlier this month — evidently snoozing the day away.

Doucette was in charge of the lab's chilled water plant from 1975 until his retirement in 1991. He was in the Air Force for 23 years and served in the Korean War.

He is survived by three sons, Bradley H. Doucette of Watumpka, Ala., Brian T. Doucette of Fort Charles, Fla., and Allan F. Doucette of Shirley, Mass.

Doucette has been named professor of the practice, a position reserved for distinguished practitioners.

"I am especially thrilled to be working closely with an incredibly creative and passionate group of scientists, artists, designers and engineers who constitute the faculty and students of the lab," Moss said.

"If you could imagine MIT as a healthy community working together over the next decade to overcome some of the world's most pressing societal problems — from providing improved health care to an aging population, to devising inexpensive digital tools for developing economies, to changing the way children learn," he said.

Moss received his bachelor of science degree in aerospace and mechanical sciences from Princeton, and master's and Ph.D. degrees in aeronautics and astronautics from MIT.

To learn more about win.mit.edu, including how to join the

The win.mit.edu domain provides a set of tools for departmental IT administrators, including group management, "containers" to manage groups of machines and streamlined software installation.

Individual users can access their home directories on the server from any machine in the domain. They can also view, copy or restore older versions of files in their home directory, as far back as 64 days.

To log in to ESS, go to web.mit.edu/ess.

To log on to ESS, go to web.mit.edu/ess.

Information, info on ethnic origin and military service (needed

JLF and 2007/85K. Asking $15,900. Call 617-

to Classifieds, Rm 11-400. Deadline is noon

A barred owl was spotted on campus earlier this month — evidently snoozing the day away.

Doucette was in charge of the lab's chilled water plant from 1975 until his retirement in 1991. He was in the Air Force for 23 years and served in the Korean War.

He is survived by three sons, Bradley H. Doucette of Watumpka, Ala., Brian T. Doucette of Fort Charles, Fla., and Allan F. Doucette of Shirley, Mass.

Doucette has been named professor of the practice, a position reserved for distinguished practitioners.

"I am especially thrilled to be working closely with an incredibly creative and passionate group of scientists, artists, designers and engineers who constitute the faculty and students of the lab," Moss said.

"If you could imagine MIT as a healthy community working together over the next decade to overcome some of the world's most pressing societal problems — from providing improved health care to an aging population, to devising inexpensive digital tools for developing economies, to changing the way children learn," he said.

Moss received his bachelor of science degree in aerospace and mechanical sciences from Princeton, and master's and Ph.D. degrees in aeronautics and astronautics from MIT.

To learn more about win.mit.edu, including how to join the

The win.mit.edu domain provides a set of tools for departmental IT administrators, including group management, "containers" to manage groups of machines and streamlined software installation.

Individual users can access their home directories on the server from any machine in the domain. They can also view, copy or restore older versions of files in their home directory, as far back as 64 days.

To log in to ESS, go to web.mit.edu/ess.

To log on to ESS, go to web.mit.edu/ess.

Information, info on ethnic origin and military service (needed
Concert slated to memorialize Edward Cohen

Edward Cohen (1940-2002), a classically trained pianist inspired by jazz and devoted to new music, was greatly respected and loved as a colleague and teacher at MIT.

When he passed away after teaching for 25 years in MIT’s music section, his colleagues decided to honor him by setting up a memorial fund to finance a new series of concerts at MIT, each of which would showcase at least one of Cohen’s compositions.

The first Edward Cohen Memorial Concert, to be held Monday, Feb. 27, at 8 p.m. in Kresge Auditorium, will feature Collage New Music, directed by David House, performing works by Cohen and others who were close to him. Admission is free.

The program will i n c l u d e Cohen’s “Elegy” (1957) and “Sonnet” (1961); “Duo for” by Marjorie Morey (Cohen’s widow, who is the Drake Professor of Humanities and Fine Arts at Macalaster College); and “In Elois Memoir” (1968) by Seymour Shifrin, who was Cohen’s composition teacher at the University of California at Berkeley.

In addition, there will be two short works for piano solo. One is a new work, “Eulogy,” written for the concert and dedicated to Cohen’s memory by Martin Boykan, a close personal friend of Cohen’s. Boykan is the current Fine Professor of Music at Brandeis University. The other is a transcription of “I Should Care” from the movie “The Bells of St. Mary’s,” which was a hit when it was released in 1945.

For a fuller version of this story, visit web.mit.edu/newsoffice/2006/arts-cohen.html

Edward Cohen

Although Shields’ acting career has been successful (she has appeared on television, on stage and recently in the film “Nine Lives,” directed by Rodrigo Garcia), it hasn’t been a straight path, she said.

After graduating from MIT, Shields was accepted to the Ph.D. astrophysics program at the University of Wisconsin, only to realize one year later that the relentless pursuit of her childhood dream was no longer fulfilling.

“I took a deferment from Wisconsin to do the UCLA MFA program in acting,” she said. “And I never went back.”

Shields decided to return to MIT, where she studied acting and set her sights on realizing one year later that the relentless pursuit of her childhood dream was no longer fulfilling.

“We do not take pictures with our camera, but with our hearts and minds.”

—Arnold Newman

Since the 1940s, Arnold Newman has been among the world’s best-known photographers — capturing legendary artists, poets, politicians, actors and scientists on film.

A list of his portraits, which have appeared in such magazines as Life, Fortune and the New Yorker, reads like a who’s who: Igor Stravinsky, Leonard Bernstein, George Harrison, Alexander Calder, Pablo Picasso, Edward Hopper, Salvador Dalí, Georgia O’Keeffe, Berenice Abbott, Isaac Asimov, Eugene O’Neill, Paul Austin, Harry S. Truman, Yitzhak Rabin, Dwight Eisenhowen and Marilyn Monroe.

“Arnold Newman, 20th Century Photographer,” a series of six billboards of his portrait, is on view at the Compton Gallery through March 31. A number of leading scientists are pictured, including a few MIT figures: Vannevar Bush (1890-1974, who organized and led America’s science and technology effort during World War II); Walter Rosenblith (1913-2002, pioneer in the use of computers and mathematical models in the study of the brain); and Harold “Doc” Edgerton (1903-1990, the father of electronic flash photography).

Newman also has a personal connection with MIT. His son, Eric, earned three degrees here (S.B. 1971, S.M. 1972 and Ph.D. 1975) and met his wife, Janice (Gonser), also an MIT student, here. Their daughter, Sarah, is currently a senior in earth, atmospheric and planetary sciences.

Newman’s photographic style, referred to as “environmental portraiture,” places his subjects in a physical setting related to their area of expertise, setting a context for their lives and work.

Newman, who continues to work, has won numerous awards and has published 13 books of photographs, including his most recent, “Arnold Newman” (Taschen Publications), which showcases more than 60 years of his work.

For more information, call x-4444.

Director to discuss ‘City of God’ at Stata

Brazilian-born film director Katia Lund will discuss “Stories Behind and Beyond Brazil’s City of God” on Tuesday, Feb. 21, at 7 p.m. in the Stata Center’s Kirch Auditorium.

Lund co-directed the Oscar-nominated 2002 film “City of God,” a fictionalized look at how armed drug gangs came to dominate the poverty-stricken favelas (or shantytowns) of Brazil. It was selected as Brazil’s Oscar entry in 2003 and won an Academy Award for Best Foreign Language Film.

Through her talk, “City of God” will be examined on several levels: the difficulty of capturing the reality of a movement in a film, the role of the director, and the art of filmmaking.

Lund will tour labs and meet with students, faculty and staff.

In conjunction with her visit, the Lecture Series Committee (LSC) will screen two of her films: “Central Station” on Friday, Feb. 17, at 7:30 p.m. and 10:30 p.m. in Room 26-100 and “City of God” on Saturday, Feb. 18, at 7 p.m. and 10 p.m. in Room 26-100 and on Sunday, Feb. 19, at 10 p.m. in Room 10-250. Admission to LSC films costs $3.

Alumna’s show asks a theatrical ‘Where to?’

When she was 12, Aomawa Shields knew she wanted to be an astronaut. She studied astronomy and set her sights on becoming a professor of astronomy at the University of Wisconsin, only to realize one year later that the relentless pursuit of her childhood dream was no longer fulfilling.

“We do not take pictures with our camera, but with our hearts and minds.”

—Arnold Newman

Since the 1940s, Arnold Newman has been among the world’s best-known photographers — capturing legendary artists, poets, politicians, actors and scientists on film.

A list of his portraits, which have appeared in such magazines as Life, Fortune and the New Yorker, reads like a who’s who: Igor Stravinsky, Leonard Bernstein, George Harrison, Alexander Calder, Pablo Picasso, Edward Hopper, Salvador Dalí, Georgia O’Keeffe, Berenice Abbott, Isaac Asimov, Eugene O’Neill, Paul Austin, Harry S. Truman, Yitzhak Rabin, Dwight Eisenhowen and Marilyn Monroe.

“Arnold Newman, 20th Century Photographer,” a series of six billboards of his portrait, is on view at the Compton Gallery through March 31. A number of leading scientists are pictured, including a few MIT figures: Vannevar Bush (1890-1974, who organized and led America’s science and technology effort during World War II); Walter Rosenblith (1913-2002, pioneer in the use of computers and mathematical models in the study of the brain); and Harold “Doc” Edgerton (1903-1990, the father of electronic flash photography).

Newman also has a personal connection with MIT. His son, Eric, earned three degrees here (S.B. 1971, S.M. 1972 and Ph.D. 1975) and met his wife, Janice (Gonser), also an MIT student, here. Their daughter, Sarah, is currently a senior in earth, atmospheric and planetary sciences.

Newman’s photographic style, referred to as “environmental portraiture,” places his subjects in a physical setting related to their area of expertise, setting a context for their lives and work.

Newman, who continues to work, has won numerous awards and has published 13 books of photographs, including his most recent, “Arnold Newman” (Taschen Publications), which showcases more than 60 years of his work.

For more information, call x-4444.

Director to discuss ‘City of God’ at Stata

Brazilian-born film director Katia Lund will discuss “Stories Behind and Beyond Brazil’s City of God” on Tuesday, Feb. 21, at 7 p.m. in the Stata Center’s Kirch Auditorium.

Lund co-directed the Oscar-nominated 2002 film “City of God,” a fictionalized look at how armed drug gangs came to dominate the poverty-stricken favelas (or shantytowns) of Brazil. It was selected as Brazil’s Oscar entry in 2003 and won an Academy Award for Best Foreign Language Film.

Through her talk, “City of God” will be examined on several levels: the difficulty of capturing the reality of a movement in a film, the role of the director, and the art of filmmaking.

Lund will tour labs and meet with students, faculty and staff.

In conjunction with her visit, the Lecture Series Committee (LSC) will screen two of her films: “Central Station” on Friday, Feb. 17, at 7:30 p.m. and 10:30 p.m. in Room 26-100 and “City of God” on Saturday, Feb. 18, at 7 p.m. and 10 p.m. in Room 26-100 and on Sunday, Feb. 19, at 10 p.m. in Room 10-250. Admission to LSC films costs $3.
Mo' Mozart

The Biava String Quartet, above, will perform with Professor Marcus Thompson, a violinist, on Friday, Feb. 17, at 8 p.m. in Kresge Auditorium. The concert is part of Thompson’s celebration of Mozart’s 250th birthday and will feature the birthday boy’s Violin Quintet in C Minor and works by Joseph Haydn and Henri Dutilleux.

Go Online! For complete events listings, see the MIT Events Calendar at: http://events.mit.edu.
Go Online! Ofﬁce of the Arts website at: http://web.mit.edu/arts/office.

SAUDIA ARABIA AND THE WORLD

Prince Turki Al-Faisal, Saudi ambassador to the United States, talks about Saudi Arabia and the global community.

FEB. 16
Room 15-070
4 p.m.

THE VAGINA MONOLOGUES

Performance will beneﬁt V-Day, a movement to stop violence against girls and women. Feb. 15-18, $10, 95 students.

LIBRARY BOOKSALE

Books from a range of disciplines on sale, with proceeds to beneﬁt the Libraries’ Preservation Fund. Open to MIT community only.

FEB. 24
Room 10-015
10 a.m.-3 p.m.

EDITOR’S CHOICE

FEB. 17
February 20

“Amorous Intent: Looking for Love at MIT”
Curated exhibition exploring the cynical, the sweet, the humorous, the melancholy, the funny, the bitter and any other interpretation on the theme of love at MIT. 24 hours. Ends Feb. 22. Wiesner Student Art Gallery, 253-7019.

Development Dinner Discussion: Health Issues Dinner discussion of health issues related to development. 6:30-8 p.m. Room 35-520.

Sunday, Feb. 19

Chantey Sing Along: sea music and a room full of maritime enthusiasts, professionals and amateur singers. 1-4 p.m. MIT Museum.

International Folk Dancing 8-11 p.m. Kresge Rehearsal Room, 253-FOLK.

SUNDAY FEBRUARY 15-19

MIT EVENT HIGHLIGHTS FEBRUARY 15-19

MONDAY February 20

Presidents’ Day

TUESDAY February 21

F.A.S.T.
Thoughts on National: Engineering/ School Vacation Week Programs spotlighting the work, training and achievements of MIT engineering professors, researchers and students. 2-4 p.m. MIT Museum, 452-2111.

2006 Student Origami Competition Deadline Submitted works are judged by a jury and winning entries are exhibited in the Wiesner Gallery. Deadline is 5 p.m. Room E15-205.

Architecture Lecture: “Light is Sweet” Talk by architect Jea Cha. 8:30 p.m. Room 10-250, 253-7791.

STORIES BEHIND AND BEYOND BRAZIL’S “City of God” Presentation by ﬁlm director Katia Lund, co-director of “City of God.” 7 p.m. Room 32-123, 253-2341.

WEDNESDAY February 15

$30,000 Lemelson-MIT Student Prize Press Conference Press conference to announce the 2006 winner of the $30,000 Lemelson-MIT Student Prize. 10:30–11:30 a.m. Room 200, 253-3552.

“Knowing the Enemy: Jihadist Ideology and the War on Terror” Talk by Mary Habek of Johns Hopkins University. Noon. Room E38-615, 253-7629.

THURSDAY February 16

“How Has Anyone Ever Seen a Photograph of Rape?” Geneviève McMillan-Raba Stewart Lecture on Women in the Developing World presented by Anneliza Anouzla of the University of California. 3:30 p.m. Room 32-141, 253-8844.

Teaching and Educational Practice Talk by Professor Steven R. Lerman. 3:40 p.m. Faculty Club, 308-9797.

Bibur: MIT-Techlink Information Information on cultural exchange program with the Israeli Institute of Technology. 3:30 p.m. Room W20-407, 253-2982.

FRIDAY February 17

Finding Form, The Art of Richard Filippovski” The work of renowned sculptor and MIT faculty member Richard Filippovski. MIT Museum. Noon-5 p.m. $5 adults; $2 students, seniors and children 5-18 free; with an MIT ID. 253-4444.

MIT Quest Artist in Residence Concert Blaiva String Quartet with Professor Marcus Thompson, viola. 8 p.m. Kresge Auditorium, 253-2826.

SABRE DE PASION – A Night Argentine Tango Dancing Beginner tango class followed by tango dancing. 8-11:30 p.m. Room 250-105. 253-2805.

SATURDAY February 18

“COLLISION Box #2: Cars and Stars” Andy Zimmerman’s multime diainstallation, “Cars and Stars,” projects digital animation and video onto a three-dimensional sculpture, with accompanying digital sound composition. $5 adults; $2 students, free with MIT ID. Noon-5 p.m. MIT Museum, 253-4444.

VARSITY Women’s Basketball vs. Smith College 1 p.m. Rockwell Cage. 258-1265.

SUNDAY February 19

Varisty Men’s Basketball vs. Smith College 1 p.m. Rockwell Cage. 258-1265.

REAL FEMINIST photobysus. Wiesner 8-11 p.m. Kresge Rehearsal Room, 253-FOLK.

CALENDAR

FEBRUARY 20-26

MONDAY February 20

“Aaron’s Intent: Looking for Love at MIT” Curated exhibition exploring the cynical, the sweet, the humorous, the melancholy, the funny, the bitter and any other interpretation on the theme of love at MIT. 24 hours. Ends Feb. 22. Wiesner Student Art Gallery, 253-7019.

Development Dinner Discussion: Health Issues Dinner discussion of health issues related to development. 6:30-8 p.m. Room 35-520.

Trivia Night Must be over 21. ID required. Every Monday night, 8:15-11:30 p.m. Thrity Ear Pub. 258-9754.

FEB. 21
Room 10-250
5 p.m.

THE VAGINA MONOLOGUES

Performance will benefit V-Day, a movement to stop violence against girls and women. Feb. 15-18, $10, 95 students.

FEB. 22
Room 10-250
5 p.m.

STORIES BEHIND AND BEYOND BRAZIL’S “City of God” Presentation by ﬁlm director Katia Lund, co-director of “City of God.” 7 p.m. Room 32-123, 253-2341.

FEB. 23
Room 2-50
5 p.m.

SCULPTURE: The 2006 MIT Art Series Juried Student Biography Exhibition. 2 p.m. MIT Museum, 253-7019.

FEB. 24
Room 10-150
8 p.m.

LIBRARY BOOKSALE

Books from a range of disciplines on sale, with proceeds to beneﬁt the Libraries’ Preservation Fund. Open to MIT community only.

FEB. 25
Room 2-50
5 p.m.

ANNUAL LUNAR NEW YEAR’S BANQUET

The Year of the Dog, $45 advance, $50 at the door. 7-11 p.m. McCormick Dining.

FEB. 26
Room 10-015
10 a.m.-3 p.m.

SUNDAY February 26

Gallery Talk of the Drawing Board, Out on the Road” A Family Adventures in Science & Technology presentation. 2-4 p.m. MIT Museum. $5 adults; $2 students, seniors and children 5-18 free; with an MIT ID. 253-4444.

F.A.S.T. Program: MIT Motorsports: “Off the Drawing Board, Out on the Road” A Family Adventures in Science & Technology presentation. 2-4 p.m. MIT Museum. $5 adults; $2 students, seniors and children 5-18 free; with an MIT ID. 253-4444.

PHOTO / DONNA LEVY

PHOTO / WIESNER STAFF

PHOTO / SUSAN WILSON

PHOTO / JOE CHAN

PHOTO / HILARY WHEELER