Faculty hears reports on health, education

Deborah Halber
News Office Correspondent

A task force chaired by Robert J. Silbey, dean of the School of Science, has been conducting a comprehensive review of the common undergraduate educational experience that will likely result in the first changes in the General Institute Requirements (GIRs) since 1991. The task force presented a progress report at the Nov. 16 faculty meeting, which was held in Room 32-141 of the Stata Center.

Faculty also heard another task force recommend keeping the basic model of services provided by the MIT Medical Department.

Some of the changes that may be in store when the review of the Undergraduate Educational Commons is complete include: expanding the scope of required courses with project-based experiences; giving students more individual choice; including engineering as well as science subjects in the core; and making the humanities, arts and social science (HASS) requirements simpler and more focused.

Faculty and students do not understand the goals of the science-engineering core, Silbey said.

“We think these GIRs could be changed,” Silbey told the faculty. “We believe the GIRs are taught well and the subject matter is appropriate. The question raised is, why this set of GIRs and not a different set of GIRs?” The committee, he said, is taking a “completely new look” at the content and goals of an MIT education.

Task force recommends changes to academic core

Under the proposed recommendations, undergraduate students would be required to take eight subjects in mathematics, physical sciences, life sciences, chemical sciences, computation and engineering, instead of the present six required subjects plus two Restricted Electives in Science and Technology (REST). Silbey said the task force’s design challenge is how to organize these eight classes into a menu that broadens the core but takes departmental programs into account. “We will need a strong oversight committee to make this work.”

In addition to the current science core, students are required to take eight HASS classes. Silbey said the committee has heard from students that they tend to sign up for their science core classes and classes in their major first and then take whatever HASS classes fit their schedules. “This gives students exactly the wrong message,” he said. The task force is working on a way to make the HASS requirement “simpler and less diffuse.”

Meanwhile, Silbey said the current lab requirement may be “a white elephant. Every science and engineering major requires enough labs for us to be satisfied. And those courses that do not require a lab would have a capstone experience of some sort.”

Given that no school can teach students “everything they need to know” for a lifetime, Silbey said the “call of an MIT education should be made more explicit. An

Mriganka Sur sees ‘great synergy’ in new complex

In advance of this week’s opening of the new Brain and Cognitive Sciences Complex, News Office science and engineering writer Elizabeth Thomson conducted the following interview with Mriganka Sur, head of the Department of Brain and Cognitive Sciences.

Q. What is unique or special about MIT’s approach to cognitive science and neuroscience?

A. MIT emphasized — long before it became fashionable — a highly integrated and interdisciplinary approach to understanding the brain and mind. (These fields later came to be known as neuroscience and cognitive science respectively.)

Cognitive science has its roots in [Institute Professor Emeritus Noam] Chomsky’s analysis of language, showing that the mind has a structure that can be analyzed in terms of the computations it carries out. Neuroscience has its roots in the analysis of the brain and behavior, which was pioneered by the late Hans-Lukas Teuber when he founded the Department of

Mriganka Sur, head of the Department of Brain and Cognitive Sciences, stands on a balcony overlooking the 90-foot atrium inside the new Brain and Cognitive Sciences Complex, which will be officially dedicated on Friday, Dec. 2.

PHOTO / DONNA COVENEY

See FACULTY

Page 6

Brain regions ‘tune in’ to coordinate activity

Deborah Halber
News Office Correspondent

Different brain regions working together may coordinate by locking into an oscillation frequency the way a radio tuner locks into a station, researchers from the Picower Institute, explore how brain waves help different parts of the brain communicate in a broad-based network. When we are focused attentively on a speaker, for instance, brain waves called theta rhythms oscillate in sync throughout our brains. Other rhythms are prominent when we are resting or involved in intense activity.

Researchers have found that neurotransmitters — and antidepressants — can affect these rhythms. To our brains, the inability to shut down these brain wave communication channels is like having to listen to someone talking who won’t shut up, Wilson said. Unsyncronized brain rhythms may be tied to mood disorders or diseases such as schizophrenia, he said.

In the PLoS paper, Wilson and Jones looked at particular theta rhythms in rats. These rhythms are associated with complex behaviors that tap into memory and/or decision making, such as rats exploring a maze or humans navigating, planning or

PHOTO COURTESY / MATTHEW K. JONES

The theta rhythm, simultaneously recorded in the hippocampus (grey) and prefrontal cortex (black), is shown reaching peak synchrony (the yellow streak and white blob).
Posen will direct Security Studies
Sarah H. Wright News Office

Barry Posen, Ford International Professor of Political Science, has been appointed head of the MIT Security Studies Program (SSP). Speaking at the announcement, Philip S. Khoury, Kenan Sahin Dean of the School of Humanities, Arts and Social Sciences, said, “Barry Posen is one of America’s most talented scholars and teachers of national and international security. He has earned the faculty member to assume the leadership of MIT’s nationally acclaimed Security Studies Program.”

Posen will succeed Harvey Sapolsky, professor of public policy and organization in the Department of Political Science, effective July 1. Sapolsky was appointed to the position in 2002. “I am honored to have been chosen by my colleagues to direct the Security Studies Program. SSP has been my intellectual home for nearly 20 years. I could not have found a better one,” Posen said.

Posen credited his predecessors and colleagues in SSP for making the program “one of the premier places in the United States to think about and to learn about all aspects of the role of military power in international politics, and the problems of disciplining that power.”

“We are very proud of Barry for agreeing to offer us his leadership. We also owe great thanks to Barry Sapolsky for the role he has played in the development of the program,” said Stephen Van Evera, Center for International Studies acting director and professor of political science.

Two generations of extraordinary leaders preceded me,” said Jack Ruina, created this institution, and Harvey Sapolsky nurtured it to adulthood. Harvey has been a great friend, a terrific mentor and an unwaveringly committed and responsible director. As I face the many challenges that lie ahead, I do not think that I can go far wrong by emulating him.”

Posen’s research topics include European Union defense policy, international security doctrine — both of which won major awards in the field. His research topics include European Union defense policy, international security doctrine — both of which won major awards in the field.

National Academies honors Levenson’s film for NOVA
Sarah H. Wright News Office

Thomas Levenson, associate professor of science writing in the program in writing and humanistic studies, has been awarded the 2005 National Academies Communications Award in the TV/radio category for “Origins: Back to the Beginning,” a film broadcast on the NOVA series, which covers 14 billion years of cosmic evolution.

Two generations of extraordinary leaders preceded me,” said Jack Ruina, created this institution, and Harvey Sapolsky nurtured it to adulthood. Harvey has been a great friend, a terrific mentor and an unwaveringly committed and responsible director. As I face the many challenges that lie ahead, I do not think that I can go far wrong by emulating him.”

Posen’s research topics include European Union defense policy, international security doctrine — both of which won major awards in the field.

National Academies honors Levenson’s film for NOVA
Sarah H. Wright News Office

Thomas Levenson, associate professor of science writing in the program in writing and humanistic studies, has been awarded the 2005 National Academies Communications Award in the TV/radio category for “Origins: Back to the Beginning,” a film broadcast on the NOVA series, which covers 14 billion years of cosmic evolution.

Two generations of extraordinary leaders preceded me,” said Jack Ruina, created this institution, and Harvey Sapolsky nurtured it to adulthood. Harvey has been a great friend, a terrific mentor and an unwaveringly committed and responsible director. As I face the many challenges that lie ahead, I do not think that I can go far wrong by emulating him.”

Posen’s research topics include European Union defense policy, international security doctrine — both of which won major awards in the field.

The two join 43 other current and past members of the MIT community who have received the National Medal of Science.
In work that could radically change how engineers search for new materials, MIT researchers have developed a way to test the mechanical properties of almost all different materials in a matter of days—a task that would take weeks using conventional techniques.

The new process could lead to the faster identification of dental implants that don’t crack, tank armor that’s more resistant to missiles, and other materials dependent on mechanical properties like stiffness and toughness.

The trick? The team, led by Assistant Professor Kristyn J. Van Vliet of the Department of Materials Science and Engineering, miniaturized the process.

In 2004 Anderson, Langer and a colleague reported using robotic technology to deposit more than 1,700 spots of biomaterial (roughly 400 different materials in triplicate) on a glass slide measuring only 25 millimeters wide by 75 millimeters long. Twenty such slides, or microarrays, could be made in a single day.

The arrays were then used to determine which materials were most conducive to the growth and differentiation of human embryonic stem cells. (See web.mit.edu/newsoffice/2004/celltest.html.)

Enter Van Vliet, whose lab studies how the mechanical properties of a surface affect cells growing on that surface. Curious as to whether the Langer team had probed the mechanical properties of the biomaterials, she contacted Langer, who introduced her to Anderson.

And what began as an isolated question turned into a collaboration with wider implications.

Together the researchers showed that the mechanical properties of each biomaterial could indeed be determined — and quickly — by combining the arrays with nanoindentation, a technique key to Van Vliet’s research.

In nanoindentation a hard, small probe is pressed into a more compliant material, to depths many times smaller than the diameter of a human hair. By measuring the force applied and how deeply the probe penetrates the material, scientists can learn a great deal about the material’s mechanical properties.

“The spots of material Dan was making had hardness values about three times that of a human hair, a scale perfect for nanoindentation,” Van Vliet said. So the team created new arrays of roughly 600 unique polymers. “Each dot was a combination of two different monomers, or building blocks, so we could map out the effects of the percentage of each monomer on the properties of the material,” Van Vliet said.

In 24 hours Tweedie, using the nanoindenter, had data in hand.

“It would have taken many weeks to analyze that many materials using traditional techniques, which involve “the serial process of bulk-material synthesis, batch-sample preparation, and individual-sample testing,” the team writes in Advanced Materials. Further, Anderson explained, many materials have been discovered when a scientist thinks about what the perfect properties of a material should be, and then invests it. “But that can take lots of time,” he said.

Enter combinatorial libraries. “Instead of trying to engineer perfect materials, let’s make thousands at the smallest scale we can, and see if we can find some materials with unexpected or interesting properties,” Anderson said.

Tweedie notes that even in this first “proof of principle” experiment there were some surprises. For example, she said, “the stiffness of certain polymers depended more on the combination of monomers used (how much of A and B rather than the structure of each monomer, with certain combinations resulting in very compliant polymers. These were very large, unanticipated changes in mechanical properties that could then be optimized further in a number of combinations.”

Describing the collaboration that brought about these results, Van Vliet concluded: “It’s really made both [of our groups] think in different ways about what we’re doing.”

This work was funded by the National Institutes of Health, the U.S. Army Research Office through MIT’s Institute for Soldier Nanotechnology, and the National Defense Science and Engineering Graduate Fellowship program.
New architecture brings scientists together

Three tenants share neuroscience complex

Kathy M. O'Tell

Just over two years ago, MIT broke ground on what would become the largest neuroscience complex in the world. Since then, an extraordinary facility has risen from a dirt field intersected by a freight rail line: the Brain and Cognitive Sciences Complex. "It was formally dedicated until Friday, Dec. 2, so there are some -- MIT's Department of Brain and Cognitive Sciences, the Pioneer Institute for Learning and Memory and the McGovern Institute for Brain Research -- are only just now at work to foster a more comprehensible understanding of the brain," said Brian Butterworth, professor of history and science research in the Boston area, the new complex includes molecular biology laboratories, systems neuroscience laboratories, cognitive science laboratories and a brain imaging center.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

Brain and Cog dedication Fri.

The Brain and Cognitive Sciences Complex will be officially dedicated in a ceremony in the atrium on Friday, Dec. 2, at 2 p.m. Chairmen of the Board of Directors Dara G. Miller will offer a few words of welcome, followed by remarks from Professor Susan H. Altschuler. Miller will be followed by Reginald Stur, head of the Department of Brain and Cognitive Sciences, Robert D. Ottenstein, director of the McGovern Institute for Brain Research, Junzo Tonyam, director of the Pioneer Institute for Learning and Memory and Robert J. Dickey, dean of the School of Engineering and Applied Sciences. A community reception will follow from 4 to 5 p.m.

In addition of the dedication, the Department of Brain and Cognitive Sciences will hold a symposium in celebration of the 40th anniversary of the department's graduate program. The symposium will be held in the atrium on Friday, Dec. 2, from 1 to 3 p.m.

Surrounding the complex -- a 90-foot-high daylit atrium; the fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

Surrounding the complex -- a 90-foot-high daylit atrium; the fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.

Robert DeSarno, director of the McGovern Institute for Brain Research, stands by the magnetic resonance imaging machine housed inside the new complex.

Satoshi Tonegawa, director of the Pioneer Institute for Learning and Memory, has an observatory next to his office in the new Brain and Cognitive Sciences Complex.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

A wall of windows on the Vassar Street side of the complex allows light into the upper-floor conservatory.
New architecture brings scientists together

MIT’s Department of Brain and Cognitive Sciences, or BCS, is the only department of its kind, anywhere, in which the study of the brain and mind is carried out by a single faculty, and in which the various levels of analysis for studying the brain—molecular, systems and computational—are combined together with the cognitive level.

What will the new complex make possible in terms of research?

A. Psychology at MIT in the early '60s.

It is very special to have these levels of analysis—molecular (the study of the brain's molecules), such as neuroimaging and receptor, systems (the brain and mind) and computational (the study of brain mechanisms and cognitive the study of brain molecules and models) — all combined under one roof, with different laboratories, students and researchers in close proximity. We expect great synergy to come out of this.

The new complex brings together the study of brain disorders such as autism, depression, Alzheimer's and Parkinson's disease. Since the mind is so complex, it is hard to pin down the causes of these disorders. What is the role of the environment? How do these disorders arise and progress? How are they treated now? What major advances can be expected in the future?

A. New architecture brings scientists together

We expect great synergy to come out of this.

The fifth-floor observatory, seen from the sixth floor, provides green space within the new complex.

Brain and Cog dedication Fri.

The Brain and Cognitive Sciences Complex will be officially dedicated in a ceremony in the atrium on Friday, Dec. 2, at 2 p.m.

Chairman of the Corporation Nancy D. Brown will deliver a few words of welcome, followed by remarks from Picower Institute for Learning and Memory director Susumu Tonegawa; Robert Desimone, director of the McGovern Institute for Brain Research; Susan Hockfield, president of MIT; and Robert L. Leibler, dean of the School of Engineering and Science.

A community reception will follow from 2:30 to 4 p.m.

In advance of the dedication, the Department of Brain and Cognitive Sciences will host a symposium in celebration of the 40th anniversary of the department's creation, at 12:30 p.m. in the atrium. Shaping Neuroscience and Cognitive Complexes: A Symposium on the Future of Mind and Brain will explore the exceptional design of laboratories and the care given to spatial planning.

A. What are the top three questions in neuroscience that researchers here and around the world are working to understand?

A. The answer depends on the person you ask. For me, the major questions are: how is the brain wired (or how is its wiring modified by the environment); how are brain networks restructured and do the cellular and network functions give rise to the mind, including its exceptional features such as language and emotion, and right consciousness.

A. What major advance in neuroscience over the past five years?

A. In the field of neuroscience, I believe the last few years will see major advances in understanding the molecules that give rise to the growth and function of the brain; the rapid advancement of tools for imaging the entire brain; the development of experimental and theoretical tools to study populations of neurons; and the novel combination of tools across social and levels of analysis for addressing the function of neural networks.

A. What major advances in neuroscience over the past five years?

A. I believe we will have a comprehensive understanding of the genome, of brain function and of the brain's capacity to generate new neurons or neural circuits. We will have a very good understanding of the rules by which the brain is wired, by which it functions and changes, and by which brain function gives way in a range of disorders. Specifically, I believe we will have a comprehensive understanding of the genome, of brain function and of the brain's capacity to generate new neurons or neural circuits.
Cell phones have transformed the micro-culture of classrooms and may be the dark side: 41 percent found check news for professors, it seemed. Now for Rutgers students surveyed said it was classroom microclimate has new rules of phones owned and used by students, the United States.

Center for Mobile Communications Studies at Rutgers University and director of the Center for Mobile Communications Studies, and Jing Wang, S. C. Fang Professor of Chinese Languages and Culture at MIT. Katz focused on how cell phone use has altered social norms in classroom microclimates and in public spaces within the United States.

MIT students in the "Cell Phone Culture" audience seemed especially alert when Katz described research on "tele-density" and the contested "micro-culture" of classrooms at Rutgers.

Due to "tele-density," i.e. number of cell phones owned and used by students, the classroom microclimate has new rules of engagement, Katz said. According to Katz, only 4 percent of Rutgers students surveyed said it was "OK to talk on a phone in class." Good news for professors, it seemed. Now for the dark side: 41 percent found checking messages OK during class; 45 percent ing messages OK during class; 45 percent were working to create a profitable youth music market.

Some interior public spaces, especially restaurants, are still "contested terrains," Katz noted, with certain spaces, notably Antraks' "quiet car" and New York's Metropolitan Museum of Art, demarcated as cell-phone-free. Wang portrayed a different cultural landscape in China, where cell phones are widely-used in place of standard telephones that mean "phones are working to create a profitable youth music market.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

Some interior public spaces, especially restaurants, are still "contested terrains," Katz noted, with certain spaces, notably Antraks' "quiet car" and New York's Metropolitan Museum of Art, demarcated as cell-phone-free. Wang portrayed a different cultural landscape in China, where cell phones are widely-used in place of standard telephones that mean "phones are working to create a profitable youth music market.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

Some interior public spaces, especially restaurants, are still "contested terrains," Katz noted, with certain spaces, notably Antraks' "quiet car" and New York's Metropolitan Museum of Art, demarcated as cell-phone-free. Wang portrayed a different cultural landscape in China, where cell phones are widely-used in place of standard telephones that mean "phones are working to create a profitable youth music market.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.

"Since only people who have U.S. or European credit cards can purchase music from iTunes, Chinese iPod owners use the gadget to convert music from their CD collections, which are made of cheap pirated CDs. The Apple vision — "Pods and iTunes were born together" — is irrelevant in China," she said.

For example, Motorola aspirates to make music phones that will become an alternative iPod — the notion of mobile music technology, particularly in China, as an abstract concept even in urban China, even among the most trendy young genera. Wang also noted that the impact of the Cultural Revolution gave Chinese audiennent a number of 1996, only 10 years to digest 50 years of Western music.

"As a result, Chinese 'lingel' youth are extremely hungry for a fusion of musical styles. So jazz, electronic music, rock and roll and hip-hop have all become popular in China, and youth owe no allegiance to a single musical genre," she said.
MIT Tech Talk
November 30, 2005

MIT staffer finds
everyday life
yellow

This is one in an occasional series of articles on MIT staff members who are also artists.

Lynn Heinemann
Office of the Arts

Tina Brown Celona easily justifies what she calls the alarming frequency with which cute animals turn up in her poems. “Buitinsh disnar the reader,” says the poet, an administrative assistant in MIT’s Hayden Library, who admitted that winning over an audience is important to her. As an MIT staffer building 56, Celona has the chance to weigh Nothing day when Celona reads her poems in an Artists Behind the Desk literary event at Kilkenny Hall.

With or without cute animals, Celona’s poems tend to be self-referential. “Lately, they’ve been clever and philosophical and intense,” Celona says, noting friends have told her they live in fear of being in her poems. Her poetry springs from the events of her life — from working at MIT’s Hayden Library in East Hampton, N.Y., to her current job at the library. “I take what’s around me and have told her they live in fear of being in her poems.

Feeling isolated and too far removed from other writers, Celona moved to New York in 2004 and has worked at MIT’s Hayden Library’s Administrative Services Department since January. Though she works a full 35-hour week, Celona still finds time to compose her prose poetry on a computer in her Somerville apartment.

“When I’m writing well, I can write for four or five hours at a time,” she says.

Reading is also important to her writing, says Celona, citing authors such as Albert Camus, George Orwell, Pablo Neruda and Gertrude Stein as role models and inspirations.

Celona’s collection of poems titled, “The Real Moon of Poetry and Other Poems,” (Fence Books) won the 2002 Pablo Neruda and Gertrude Stein as role models and intensively personal,” she says, noting friends have told her they live in fear of being in her poems.

Her poetry springs from the events of her life— from working at MIT’s Hayden Library in East Hampton, N.Y., to her current job at the library. “I take what’s around me and

‘Critters’ offers humans perspective

A dog, a pig, a tarantula and a chick win Celona a laugh.

And that’s not entirely a joke. “Critters” is now on view at the Media Test Wall in building 56. It’s a compilation of short videos by Francis Alys, David Claerbout and Sam Easterson that uses animal protagonists to offer a perspective on what it means to be human.

“Our attitudes toward creatures can vary wildly, from treating animals as fleshy machines without any rights or agency to overly anthropomorphize them,” said Jane Farver, director of the List Visual Arts Center, which oversees the Media Test Wall.

Noting that the three artists present individual viewpoints in “Critters,” she said that each reveals something “crucial about the business of living on two feet with a large brain and an opposable thumb.”

“Critters” is on view 24 hours a day, seven days a week through December or January, depending on weather conditions.

Theatrical alums celebrate Dramashop’s 50th anniversary

Kendra Gilbert and Mary Haller
Office of the Arts

Still from Francis Alys’ ‘El Grito’ (2003), one of the videos in ‘Critters,’ playing on the Media Test Wall at the List Visual Arts Center from Oct. 31-Dec. 31.

Traveling to MIT from across the United States and as far away as Singapore, more than 80 former members of MIT’s Dramashop returned to the Institute Nov. 19-20 to celebrate the 50th anniversary of the co-curricular theater group.

The alumni, who graduated between 1956 and 2005, joined current Dramashop members for a weekend of festivities held in conjunction with the group’s most recent production, “Lesmis.” In addition to attending the play, participants enjoyed a formal dinner hosted by the theater arts program, feasted on cake at an after-show celebration and shared experiences at a brunch in Kresge Lobby. In the final event of the weekend, alumni joined current members in a Dramashop tradition: striking the set of the current production.

It’s unclear when Dramashop was originally founded, but former MIT Professor Joseph Ermans is credited with transforming the program in the 1950s from an extracurricular activity into a co-curricular program. “With Joe Ermans, Dramashop really became a way of life,” Harris said.

In 2000, the ensemble performed a concert of Schuller’s compositions to commemorate his 75th birthday. “He’s also worked with Miles Davis and Dizzy Gillespie,” Harris said. “I can’t think of anyone else who has worked like that, advocating their music. We wanted to honor the jazz element.”

To that end, the ensemble will be performing a jazz version of the classic “Blues Moon,” that Schuller arranged.

“Jazz is very different,” said Jessica Young, a senior on the ensemble. “It’s so cool to listen to, but playing is a challenge. We’re doing our best to rise to that challenge.”

Although Schuller will not be at Monday’s MIT-concert, he attended the Wind Ensemble’s rehearsal in Kresge Auditorium on Monday, Nov. 21 (the day before his actual birthday) and gave the student musicians some feedback on their rendition of his works.

“I’m always pretty nervous to have the composer come in, especially with someone like Gunther Schuller,” said Kurt Stiehl, a junior percussionist in the ensemble. “It’s an honor just to play for him.”

At the rehearsal, Schuller hopped up on stage to listen. After each piece, he gave compliments and suggestions, from “Can you play a little softer, my dear?” to “You gotta play faster, you gotta go crazy!” After one critique, he looked and shook his head at the student musicians.

“I want you to look at me like I’m crazy… maybe I am.”

Special guests at Monday’s concert will include the MIT Festival Jazz Ensemble and local musician Ran Blake, whom Harris called “one of the great avant-garde jazz pianists.”

The performance begins at 8 p.m. in Kresge Auditorium. Tickets cost $5. For more information, call x3-2826.

Artists at Work

Composer Gunther Schuller, left, and MIT Wind Ensemble music director Frederick Harris at a Nov. 21 rehearsal for the ensemble’s Dec. 5 concert.

“It was a pretty life-changing experience,” said Carlos Armesto, who graduated in 1997 with a degree in both chemical engineering and theater, and who came to MIT as “petrified of drama kids.”

Now Armesto is a producer and director at the Ensemble Studio Theater in New York, where he is producing theater about science and technology.

“Suddenly, for the first time in my life, I’ve integrated both science and theater,” he said, calling MIT “the inspiration for what I’ve become.”

Pursuing careers in theater is “not so terribly uncommon with Dramashop members,” Harris said. “In fact, in at least part of their lives, many people continue to do theater, even if not professionally.”

What is it about Dramashop that inspires so many to make theater a permanent part of their lives? McCready gave credit to theater itself. “When you do any play, it takes up enough of your life that it defines that time for you. So people who did a lot of Dramashop plays at MIT will always define their college years, at least partially, in terms of Dramashop,” she said. “Plus, it’s just so exciting and so much fun!”

To commemorate the 80th birthday of Gunther Schuller, world-renowned composer, conductor and advocate of jazz and classical music, the MIT Wind Ensemble will perform music he composed and edited in a concert on Monday, Dec. 5.

The recipient of a Pulitzer Prize for composition, Schuller became a leader in a new style of music, said Frederick Harris, music director of the ensemble.

“Jazz is very different,” said Jessica Young, a senior on the ensemble. “It’s so cool to listen to, but playing is a challenge. We’re doing our best to rise to that challenge.”

Although Schuller will not be at MIT’s concert, he attended the Wind Ensemble’s rehearsal in Kresge Auditorium on Monday, Nov. 21 (the day before his actual birthday) and gave the student musicians some feedback on their rendition of his works.

“I’m always pretty nervous to have the composer come in, especially with someone like Gunther Schuller,” said Kurt Stiehl, a junior percussionist in the ensemble. “It’s an honor just to play for him.”

At the rehearsal, Schuller hopped up on stage to listen. After each piece, he gave compliments and suggestions, from “Can you play a little softer, my dear?” to “You gotta play faster, you gotta go crazy!” After one critique, he looked and shook his head at the student musicians.

“I want you to look at me like I’m crazy… maybe I am.”

Special guests at Monday’s concert will include the MIT Festival Jazz Ensemble and local musician Ran Blake, whom Harris called “one of the great avant-garde jazz pianists.”

The performance begins at 8 p.m. in Kresge Auditorium. Tickets cost $5. For more information, call x3-2826.
MIT EVENT HIGHLIGHTS

NOVEMBER 30 - DECEMBER 4

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 30</td>
<td>MIT Tech Talk
258-9754. 8–11:30 p.m. Room
Speakers during MIT Tech Talk: Christian Jankowski and Everything Fall Together
2 p.m. List Visual Arts Center (E15). 253-4680.</td>
</tr>
<tr>
<td>December 1</td>
<td>“Looking Back, Looking Forward: Neurosciences and the Cognitive Enterprise”
Talk by Virginia Harvey, associate professor of Neurobiology and Cognitive Sciences
2 p.m. Room 46-200. 253-4422.</td>
</tr>
<tr>
<td>December 2</td>
<td>BRAIN COMPLEX DEDICATION
Dedication of MIT’s new Brain and Cognitive Sciences Complex. 2 p.m. Kresge Auditorium. 253-2826.</td>
</tr>
<tr>
<td>December 5</td>
<td>Women’s Choral Holiday Concert
Nancy Kuslan, conductor. 3 p.m. Kilian Hall. 484-8187.</td>
</tr>
<tr>
<td>December 6</td>
<td>MIT Chamber Music Society Student Concert
Student recitals. 5 and 7 p.m. Kilian Hall. 253-2826.</td>
</tr>
<tr>
<td>November 30</td>
<td>Dante Anzolini will conduct the MIT Chamber Orchestra on Wednesday, Dec. 7, at 7 p.m. in Killian Hall.</td>
</tr>
</tbody>
</table>

MIT EVENT HIGHLIGHTS

DECEMBER 5-11

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 5</td>
<td>Operations Management & System Dynamics
Annual chocolate buffet fundraiser and panels from the AIDS Memorial Quilt. Dec. 1, 10 a.m. - 4 p.m. (Lobby 10)</td>
</tr>
<tr>
<td>December 6</td>
<td>Artists Behind the Desk Reading and Postcard<brARGV Festival
Room 5-133. 253-8438.</td>
</tr>
<tr>
<td>December 7</td>
<td>MIT Student Film Festival
7 p.m. Room 35-225. (Dec. 8-10. $5 general, $3 MIT students.)</td>
</tr>
<tr>
<td>December 8</td>
<td>Symposium in Honor of Robert A. Brown
At Russian Concert
mit symphony orchestra
Alexey Shkolnikov, conductor. 5 p.m. Kresge Auditorium. 253-2826.</td>
</tr>
<tr>
<td>December 9</td>
<td>“Between Samarska and Nirvana”
A retreat based on the Barols teachings with Tsunamis Pteethidal.
Free for MIT students, $80 everyone else. Pre-registration requested. 10:30 a.m.-4:30 p.m. Room W20-306. 324-6030.</td>
</tr>
<tr>
<td>December 10</td>
<td>Emerson Project Student Piano Scholar Recitals
3 and 7 p.m. Kilian Hall. 253-2826.</td>
</tr>
<tr>
<td>December 11</td>
<td>Rambax, MIT Benegalesse Drum Ensemble
Lamine Toure and Patricia Tang, co-directors. Winter concert. 9 p.m. Loebled Dinning Hall. 253-2826.</td>
</tr>
</tbody>
</table>

EDITOR’S CHOICE

WORLD AIDS DAY AT MIT

Dec. 1
Annual chocolate buffet fundraiser and panels from the AIDS Memorial Quilt. Dec. 1, 10 a.m. - 4 p.m. (Lobby 10)

STUDENT PLAYS

Dec. 1
One-act plays written and directed by students. Dec. 1-3.

BRAIN COMPLEX DEDICATION

Dec. 2
Dedication of MIT’s new Brain and Cognitive Sciences Complex.

DEC. 9

43 Vassar St.

Go Online! For complete events listings, see the MIT Events Calendar at: http://events.mit.edu.

PHOTO / THOMAS MAXISCH