Reaching out in wake of tsunami
Students, staff raise money to help rebuild Southeast Asia

Denise Brehm and Sasha Brown
News Office

MIT has about 300 students and many other researchers and alumni from India, Sri Lanka, Thailand, Indonesia and other countries in Southeast Asia where coastal areas were destroyed by the tsunami. Many of these members of the MIT community may have been visiting their homes when the tsunami crashed onto land Dec. 26.

Like countless families around the world, MIT is taking pains to contact students and other community members who were in the area during the disaster.

The International Students Office sent an e-mail to students from affected countries on Dec. 29, asking them to “let us know that you are okay.” Just over 80 of those students have responded to date, according to Danielle Guichard-Ashbrook, director and associate dean for international students. She anticipates hearing from many more students as phone and computer service is slowly restored to those areas.

“Though we are tremendously distressed as we see the rise in casualties and stressed as we see the regions hardest hit to support humanitarians relieved efforts following the tragedy,” the letter said.

Community groups have also initiated fundraising campaigns to send money to the regions hardest hit to support humanitarian relief efforts following the tragedy.

Student groups join together
Working together, three student organizations at MIT—the Association for India and South Asia Student Exchange (AID-MIT), Sampurna, and South Asian American Student Organizations (SAAAS)—set up donation collection booths in Lobby 10 and the Student Center beginning Jan. 3, collecting donations to aid survivors of the tsunami that is estimated to have killed more than 156,000 people in 11 different countries.

The groups have raised close to $2,000. They plan to use some of the funds to purchase a community fishing boat, along with a supply of nets. The supplies would be donated to a fishing cooperative so many fishermen would benefit. With estimates from AID’s contacts in Chennai, India, they expect the total cost to be around $3,000, said AID’s Vidya Jonnalagadda, a postdoctoral associate in biological engineering who is from Hyderabad in southern India.

Jonnalagadda, who has been collecting donations in Lobby 10, said she felt overwhelmed by the generosity and caring she has seen at MIT. “When we see students donating a crumpled dollar bill dug from the pocket of their jeans, it is really touching, because it perhaps represents their lunch money,” said Jonnalagadda, adding that some people have been very emotional, which has been especially moving. “Really, it is not the dollar amount of the donation that is so touching, it is the concern that they show,” she said.

AID is planning a dinner and silent auction to be held in Walker Memorial on Jan. 28 at 7 p.m. All proceeds will go towards tsunami relief. AID-MIT has also set up a web site to post updates from the volunteers at their Chennai branch. Donations can be made via the Sampurna web site.

Sri Lankan students pitch in
Additional funds are being collected by the Sri Lankan Student Association (SLSA), which has raised nearly $1,400 in donations they collected at a booth in the lobby of Building 25. They will continue to collect money over the coming months to help with the reconstruction effort, said former SLSA president and postdoctoral associate Samith Wijesinghe, who received his Ph.D. in aeronautics and astronautics in 2003. He is from Colombo, Sri Lanka, just under 15 miles from the island he had planned to travel to his country on Jan. 6 to assess the situation himself and report back to the SLSA on his findings.

Additional funds are being collected by the student organizations at MIT to support the Sri Lankan community. MIT Alumni Association has set up a number to help the students from Sri Lanka.

Student groups have raised close to $2,000. The groups plan to use some of the funds to purchase a community fishing boat, along with a supply of nets. The supplies would be donated to a fishing cooperative so many fishermen would benefit. With estimates from AID’s contacts in Chennai, India, they expect the total cost to be around $3,000.

Research is ongoing to help the Sri Lankan community. MIT Alumni Association has set up a number to help the students from Sri Lanka.

Reduction in chemo doses is a real possibility

Christina Yoon
Center for Cancer Research

MIT biologists may have found a way to decrease the dose of chemotherapy agents needed to tackle cancer, a feat that would also reduce toxic side effects.

Cell cancer are unique because they divide faster than ordinary cells; this also makes them susceptible to chemotherapy. While chemotherapy is an effective treatment against fast-growing tumors, it is also associated with toxic side effects because of the high doses required to be effective. Researchers from MIT’s Center for Cancer Research have suggested a new approach to achieving the same response using a lower dose of chemotherapy, thereby limiting the harmful side effects of the drugs. Their approach involves making cancer cells more sensitive to these agents.

In a paper published in the Jan. 7 issue of Molecular Cell, a research approach involves making cancer cells more sensitive to these agents.

The MIT Museum measures up

The MIT Museum now has more than 600 historic slide rules in its permanent collection, representing a major resource for scholars and collectors.

After several months of negotiations, IntelCoat Technologies of South Hadley, Mass., selected the museum to be the permanent repository of the Keuffel & Esser Company Slide Rule Collection.

Through a series of mergers, IntelCoat, which manufactures coated papers, films and specialty substrates, acquired the remaining assets—including the slide rule collection—of Keuffel & Esser of Hoboken, N.J., the most significant manufacturer of slide rules in the U.S. IntelCoat executives Robert Champignon and Charles E. Quinby decided to find an appropriate home for the collection and selected the MIT Museum.

“We feel there’s no better place than MIT, one of the world’s premier engineering schools, for this historic collection,” said Quinby, director of quality, commercialization and technical support. “And we are very excited that it will be preserved and accessible. Visitors, especially younger people such as my children, will learn to appreciate the slide rule’s role in shaping our world.”

“It is a privilege to serve as the first steward of this collection,” says Deborah Douglas, the museum’s curator of science and technology. “It has a strong emotional appeal to the MIT community, but to be provocative, one could argue that the slide rule is the most important technology of the 20th century that historians have not studied.”

Deborah Douglas, curator of science and technology for the MIT Museum, studies some of the 600 historic slide rules recently donated to the museum. Douglas is demonstrating a seven-foot slide rule that was used for teaching.

The MIT Museum now has more than 600 historic slide rules in its permanent collection, representing a major resource for scholars and collectors.

After several months of negotiations, IntelCoat Technologies of South Hadley, Mass., selected the museum to be the permanent repository of the Keuffel & Esser Company Slide Rule Collection.

Through a series of mergers, IntelCoat, which manufactures coated papers, films and specialty substrates, acquired the remaining assets—including the slide rule collection—of Keuffel & Esser of Hoboken, N.J., the most significant manufacturer of slide rules in the U.S. IntelCoat executives Robert Champignon and Charles E. Quinby decided to find an appropriate home for the collection and selected the MIT Museum.

“We feel there’s no better place than MIT, one of the world’s premier engineering schools, for this historic collection,” said Quinby, director of quality, commercialization and technical support. “And we are very excited that it will be preserved and accessible. Visitors, especially younger people such as my children, will learn to appreciate the slide rule’s role in shaping our world.”

“It is a privilege to serve as the first steward of this collection,” says Deborah Douglas, the museum’s curator of science and technology. “It has a strong emotional appeal to the MIT community, but to be provocative, one could argue that the slide rule is the most important technology of the 20th century that historians have not studied.”

The MIT Museum now has more than 600 historic slide rules in its permanent collection, representing a major resource for scholars and collectors.

After several months of negotiations, IntelCoat Technologies of South Hadley, Mass., selected the museum to be the permanent repository of the Keuffel & Esser Company Slide Rule Collection.

Through a series of mergers, IntelCoat, which manufactures coated papers, films and specialty substrates, acquired the remaining assets—including the slide rule collection—of Keuffel & Esser of Hoboken, N.J., the most significant manufacturer of slide rules in the U.S. IntelCoat executives Robert Champignon and Charles E. Quinby decided to find an appropriate home for the collection and selected the MIT Museum.

“We feel there’s no better place than MIT, one of the world’s premier engineering schools, for this historic collection,” said Quinby, director of quality, commercialization and technical support. “And we are very excited that it will be preserved and accessible. Visitors, especially younger people such as my children, will learn to appreciate the slide rule’s role in shaping our world.”

“It is a privilege to serve as the first steward of this collection,” says Deborah Douglas, the museum’s curator of science and technology. “It has a strong emotional appeal to the MIT community, but to be provocative, one could argue that the slide rule is the most important technology of the 20th century that historians have not studied.”

The MIT Museum now has more than 600 historic slide rules in its permanent collection, representing a major resource for scholars and collectors.

After several months of negotiations, IntelCoat Technologies of South Hadley, Mass., selected the museum to be the permanent repository of the Keuffel & Esser Company Slide Rule Collection.

Through a series of mergers, IntelCoat, which manufactures coated papers, films and specialty substrates, acquired the remaining assets—including the slide rule collection—of Keuffel & Esser of Hoboken, N.J., the most significant manufacturer of slide rules in the U.S. IntelCoat executives Robert Champignon and Charles E. Quinby decided to find an appropriate home for the collection and selected the MIT Museum.

“We feel there’s no better place than MIT, one of the world’s premier engineering schools, for this historic collection,” said Quinby, director of quality, commercialization and technical support. “And we are very excited that it will be preserved and accessible. Visitors, especially younger people such as my children, will learn to appreciate the slide rule’s role in shaping our world.”

“It is a privilege to serve as the first steward of this collection,” says Deborah Douglas, the museum’s curator of science and technology. “It has a strong emotional appeal to the MIT community, but to be provocative, one could argue that the slide rule is the most important technology of the 20th century that historians have not studied.”

Deborah Douglas, curator of science and technology for the MIT Museum, studies some of the 600 historic slide rules recently donated to the museum. Douglas is demonstrating a seven-foot slide rule that was used for teaching.

The MIT Museum now has more than 600 historic slide rules in its permanent collection, representing a major resource for scholars and collectors.

After several months of negotiations, IntelCoat Technologies of South Hadley, Mass., selected the museum to be the permanent repository of the Keuffel & Esser Company Slide Rule Collection.

Through a series of mergers, IntelCoat, which manufactures coated papers, films and specialty substrates, acquired the remaining assets—including the slide rule collection—of Keuffel & Esser of Hoboken, N.J., the most significant manufacturer of slide rules in the U.S. IntelCoat executives Robert Champignon and Charles E. Quinby decided to find an appropriate home for the collection and selected the MIT Museum.

“We feel there’s no better place than MIT, one of the world’s premier engineering schools, for this historic collection,” said Quinby, director of quality, commercialization and technical support. “And we are very excited that it will be preserved and accessible. Visitors, especially younger people such as my children, will learn to appreciate the slide rule’s role in shaping our world.”

“It is a privilege to serve as the first steward of this collection,” says Deborah Douglas, the museum’s curator of science and technology. “It has a strong emotional appeal to the MIT community, but to be provocative, one could argue that the slide rule is the most important technology of the 20th century that historians have not studied.”
Stewart will head political science dept.

Professor Charles Stewart III, a political scientist with expertise in legislative politics, American political development and voting, procedures and technology, was named the new head of the MIT Department of Political Science, effective Jan. 1. In making the announcement, Philip S. Khoury, the Kenan Sahin Dean of the School of Humanities, Arts and Social Sciences (SHASS) and a professor of history, said he was “extremely pleased.

Having worked with Charles in recent years in his capacity as associate dean of the School of Humanities, Arts and Social Sciences, I am sure that he will bring the same excellence here to the department that he has exercised on behalf of the school,” Khoury said.

Stewart, who served as associate dean of SHASS from August 2001 to January 2005, was named to MIT in 1985. He received the Everett Moore Baker Memorial Award for Exce- lence in Undergraduate Teaching in 1989, was elected to the second class of Macvic- ar Fellows in 1993 and received a Class of 1960 Innovation in Education Award in 2004. Stewart's service has been the under- graduate officer in political science since 1993 and has been the faculty director of the J. William Fulbright Summer Internship Program since he helped found it in 1994. Along with his wife, Kathryn M. Hess, Stewart has been a housemaster at McCror-ick Hall since 1992.

I'm excited by this opportunity to help lead a great department of interna- tional standing,” said Stewart. “From the moment I first walked into the place, over 20 years ago, I've known it to be support- ive of the unique strengths of each of its students and faculty.

“We have a history of department heads who have nurtured this particular environment, which is unusual among major research-oriented political science departments. My only hope is that I can keep this tradition alive and support the intense curiosity of the students who come to work and study here,” he said.

His courses include Intro- duction to Congressional Politics, The Political Science Laboratory and Public Policy Seminar for Washing- ton Interns.

Since 2000, Stewart has been a participant in the Caltech/MIT Voting Tech- nology Project, in which he has concentrated on estab- lishing the policy implications of the rise of absentee and early voting in the United States, in addition to estimating the number of votes that go uncounted in the United States. He also has worked in voting technologies.

He has served on the HASS Over- view Committee and chaired the Working Group on the HASS Requirement. He served on the Institute's Task Force on Student Life and Learning, chaired the Committee for Undergraduate Educational Policy, and was associate chair of the Presi- dential Task Force on the Undergraduate Educational Environment.

Khoury acknowledged his personal gratitude to Stewart, a Professor of Humanities and a professor of political science and philosophy, for his eight years of inspired leadership of the department.

—Sarah H. Wright

Dover awarded Mellon prize

John W. Dover, the Ford Interna- tional Professor of History, has been award- ed a Mellon Distinguished Achievement Award in recognition of scholarship that has contributed decisively to the study of history and promises to influence and teaching in the humanities at large.

Dover was formally notified on Dec. 17 that he had won a prestigious humanities award, which provides funds of up to $1.5 million to deepen and extend humanities scholarship over a three-year period. The funds will be granted to, and overseen by, MIT.

Philip S. Khoury, the Kenan Sahin Dean of the School of Humanities, Arts and Social Sciences and professor of history, said, “Dover’s work deserves the recognition of the Mellon Distingu- ished Achievement Award. He is widely considered one of the most distinguished historians of modern Japan and of Japanese-U.S. relations in the West.”

The Mellon funds come right at the peak of Dover’s career when it looks like we can take off with a project to weed humanities at MIT with new technological efforts and change the way we talk about teaching and research in the humanities,” said Thomas J. Lipparini, the Associate President of the Mellon Foundation.

Dover's recent and planned pro- jects move from the printed page to the interac- tive screen. In 2001, he and Shigeru Miyagawa, MIT professors of East Asian history, developed several projects, including an online course and an exhibit on Com- munist China, which makes use of text wrapped around visual materi- als.

“Our course, 'Visu- alizing Cultures,' will be a new way of using tech- nology to present com- plex historical mate- rial,” said Dover. “I'd like to open still other ways to make accessible in the public realm; I'd like it to become a new way of doing public educa- tion.”

The Mellon funds will be especially help- ful in exploring the costs of developing the framework that makes his project, which had received internal MIT support through the d'Arbeloff Fund for Excellence in MIT Education, useful. Dover noted. “This work is expensive. It's a new way of using tech- nology to present complex historical material, it's a new way of using tech- nology to present complex historical mate- rial.”

Dover, 66, came to MIT in 1981. A native of Philadelphia, he earned a Ph.D. from Harvard University. At MIT, he was the Henry R. Luce Professor of International Cooperation from 1991-96 and the Eliot E. Morison Professor of History from 1996-2003.

Students represent U.S. at historic physics conference

Three MIT undergraduates and a recent alumna will represent the United States at a conference in Paris this week where 1,000 of the world’s leading physicists, scientists, and 500 outstanding students from 60 countries will discuss the future of physics, the impact of physics on daily life, and the importance of physics research for society.

“We are very proud of these students’ achievements,” said Lipparini, who is director of the Department of Physics.

The Jan. 13-15 Physics for Tomorrow conference officially launches the World Year of Physics 2005. This international celebration is timed to coincide with the 100th anniversary of Albert Einstein’s “miraculous year,” when he revolutionized the science of physics, math and computer sci- ence; and Natalia Toro (S.B. 2003, physics) participated in the year-long celebrations Physics, and more than 30 nations are declared 2005 the International Year of Physics, and more than 30 nations are declared 2005 the International Year of Physics.

One hundred years ago Einstein

proved the existence of atoms and molecules, validated the emerging field of quantum mechanics, and developed the theory of relativity. In the years since then, physics has contributed significantly to our understanding of the universe, from the smallest sub-atomic particles to the structure of the universe, from the smallest sub-atomic particles to the structure of the universe.

The United Nations has officially declared 2005 the International Year of Physics, and more than 30 nations are declaring 2005 the International Year of Physics, and more than 30 nations are declaring 2005 the International Year of Physics.

The four students affiliated with MIT received scholarships from U.S. phys- icians organizations to attend the historic meeting. They are Chintan Hossain, a graduating senior in physics, the impact of physics on daily life, and the importance of physics research for society.

“We are very proud of these students’ achievements,” said Lipparini, who is director of the Department of Physics.

The Jan. 13-15 Physics for Tomorrow conference officially launches the World Year of Physics 2005. This international celebration is timed to coincide with the 100th anniversary of Albert Einstein’s “miraculous year,” when he revolutionized the science of physics, math and computer sci- ence; and Natalia Toro (S.B. 2003, physics) participated in the year-long celebrations Physics, and more than 30 nations are declared 2005 the International Year of Physics, and more than 30 nations are declared 2005 the International Year of Physics.

One hundred years ago Einstein

proved the existence of atoms and molecules, validated the emerging field of quantum mechanics, and developed the theory of relativity. In the years since then, physics has contributed significantly to our understanding of the universe, from the smallest sub-atomic particles to the structure of the universe, from the smallest sub-atomic particles to the structure of the universe.
Political reporter will speak at MLK breakfast

Political reporter Gwen Ifill will be the keynote speaker for MIT’s 31st annual celebration of the life and legacy of Dr. Martin Luther King Jr.

As people grow more dependent on conveniences like the Internet, cellular telephones and air travel, there is a greater need to make those systems run as efficiently as possible.

MIT’s new S.M. program in Computation for Design and Optimization (CDO) will prepare graduates to understand the key computational methods and issues at both the design and operation of complex engineering and scientific systems. “Engineering education teaches us to design the world around us,” said Robert Freund, the Theresa Seely Professor of Management and MIT’s School of Engineering and will report to the office of the Dean of Engineering, it said Freund, who credited the ease with which has its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

The program begins this fall; it was approved officially at the Dec. 15 faculty meeting. Though CDO will be part of the School of Engineering and issues, it will have its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

As a graduate of 12 and 24 months for students toward students who want to explore their personal, or junior for a year-long project in the performing, literary, visual or media arts. The program is geared toward students who want to explore their personal, racial and cultural identity through an exploration of traditional and non-traditional methods. Additionally, the fellowship, the student can work with a mentor with a background in their art form. Applicants must be U.S. citizens or permanent residents. At least 300 good academic standing throughout the project. Interested students should email an informal application and set up an appointment to discuss their application. More information is available online at arts@mit.edu.

MIT book catalog published

The MIT Press has created a new catalog exclusively for the MIT community, featuring its MIT and MIT-related titles. The catalog brings together for the first time new books, popular titles, and some less well-known titles that MIT readers may enjoy.

MITnet upgrade boosts external connectivity

IS&T recently reconfigured its external Internet connections, lowering costs and effectively doubling MIT’s commodity Internet bandwidth. Three communications vendors—Sprint, Level 3 and Cogent—now provide MIT’s external connections, as IS&T has added a new redundant connection entered into at 258-0582 or special_sales@mitpress.mit.edu.

Page dimensions: 835.0x1224.0

Q&A format on air. Ifill is also frequently asked to moderate debates in national elections, most recently the Vice Presidential debate during the 2004 election.

In 1999. Prior to joining PBS, Ifill served at NBC News for five years as chief congressional and political correspondent. While at NBC she covered national political stories for NBC Nightly News with Tom Brokaw, Today, Meet the Press and MSNBC.

Gwen Ifill

and senior correspondent for The NewsHour with Jim Lehrer.

For MIT students, the opportunity to earn a dual degree to both gain and certify their expertise in their art form. Applicants must be U.S. citizens or permanent residents. At least 300 good academic standing throughout the project. Interested students should email an informal application and set up an appointment to discuss their application. More information is available online at arts@mit.edu.

As a graduate of 12 and 24 months for students toward students who want to explore their personal, racial and cultural identity through an exploration of traditional and non-traditional methods. Additionally, the fellowship, the student can work with a mentor with a background in their art form. Applicants must be U.S. citizens or permanent residents. At least 300 good academic standing throughout the project. Interested students should email an informal application and set up an appointment to discuss their application. More information is available online at arts@mit.edu.

As people grow more dependent on conveniences like the Internet, cellular telephones and air travel, there is a greater need to make those systems run as efficiently as possible.

MIT’s new S.M. program in Computation for Design and Optimization (CDO) will prepare graduates to understand the key computational methods and issues at both the design and operation of complex engineering and scientific systems. “Engineering education teaches us to design the world around us,” said Robert Freund, the Theresa Seely Professor of Management and MIT’s School of Engineering and will report to the office of the Dean of Engineering, it said Freund, who credited the ease with which has its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

The program begins this fall; it was approved officially at the Dec. 15 faculty meeting. Though CDO will be part of the School of Engineering and issues, it will have its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

As a graduate of 12 and 24 months for students toward students who want to explore their personal, racial and cultural identity through an exploration of traditional and non-traditional methods. Additionally, the fellowship, the student can work with a mentor with a background in their art form. Applicants must be U.S. citizens or permanent residents. At least 300 good academic standing throughout the project. Interested students should email an informal application and set up an appointment to discuss their application. More information is available online at arts@mit.edu.

As people grow more dependent on conveniences like the Internet, cellular telephones and air travel, there is a greater need to make those systems run as efficiently as possible.

MIT’s new S.M. program in Computation for Design and Optimization (CDO) will prepare graduates to understand the key computational methods and issues at both the design and operation of complex engineering and scientific systems. “Engineering education teaches us to design the world around us,” said Robert Freund, the Theresa Seely Professor of Management and MIT’s School of Engineering and will report to the office of the Dean of Engineering, it said Freund, who credited the ease with which has its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

The program begins this fall; it was approved officially at the Dec. 15 faculty meeting. Though CDO will be part of the School of Engineering and issues, it will have its own admissions and will be led by co-directors Freund and Jamie Fine, professor of aeronautics and astronautics. The inter-departmental program will draw on a variety of courses from engineering, mathematics and the Sloan School of Management and co-director of the new CDO degree program.

As a graduate of 12 and 24 months for students toward students who want to explore their personal, racial and cultural identity through an exploration of traditional and non-traditional methods. Additionally, the fellowship, the student can work with a mentor with a background in their art form. Applicants must be U.S. citizens or permanent residents. At least 300 good academic standing throughout the project. Interested students should email an informal application and set up an appointment to discuss their application. More information is available online at arts@mit.edu.
Plastic packaging helps monitor ocean pollutants

When Phil Gschwend exclaims "plastic!" it’s hard not to think of the carrier advice given to Dustin Hoffman’s character in “The Graduate.” But Gschwend’s enthusiasm for the material isn’t about financial profit; he’s using plastics to better understand chemicals in the environment.

In a project funded in part by MIT Sea Grant, Gschwend, a professor in the Department of Civil and Environmental Engineering, is using plastic to collect data on levels of organic pollutants in Boston Harbor waters and sediments. The data can be used to determine which areas pose risks to the animals living there—and the humans who eat them—and to make decisions about which areas should be targeted for cleanup efforts.

One traditional method for measuring chemicals in sediments and waters is to look at chemical levels in animals such as clams and mussels. But the levels accumulated by the animals do not correspond to researchers’ models, Gschwend said. The levels in the animals were much lower than expected.

In that mismatch was due to the presence of soots and chars. Collectively, these solids include diesel soot from buses and cinders from forest fires. Black carbons get carried out to sea and washed out by rainwater and end up in places like Boston Harbor.

There, says Gschwend, they mix with the mud and grab hold of many organic chemical pollutants, making it harder for the pollutants to move out of the mud and into animals.

Taking that process into account, Amy Marie Accardi-Dey (Ph.D. 2003) discovered that predictions of chemical levels using animal samplers were off by a factor of 40. Accardi-Dey did her graduate work in the joint program between MIT and the Woods Hole Oceanographic Institution.

Since animals are ify indicators of what’s around them in mud and water, various researchers decided to put out a material that would absorb the chemical of interest. Gschwend describes the first material chosen as “little bags of fat,” plastic bags filled with the triglyceride triolein. Rachel Adams, a Ph.D. student in civil and environmental engineering, found that the bags often broke and lost the triolein.

Eventually researchers realized that the plastic alone could do the trick.

That plastic, Gschwend points out, is cheap, strong, easy to clean, and can be made from the sort of plastic that is typically used in food packaging. The bags of fat could be placed in a plastic milk bottle knowing you can’t rinse out the plastic,” he said. “It’s going to sink for a long time because the hydrophobic compounds have diffused into it.”

Working in Quincy and Duxbury Bay, Gschwend and colleagues insert plastic strips into the mud and water column to accumulate chemicals for a day or two. Back in the lab, they analyze the strips to identify and quantify the chemicals.

Thus far, Gschwend says that the amount of pollutants indicated by the plastic samplers is less than what would have been expected, reinforcing the inference of the model calculations. The finding is that certain chemicals are being dif- fused from mud into water, while others appear to be moving from water into the mud.

A new study from the MIT Center for Cancer Research provides the first mouse models of endometriosis and endometrioid ovarian cancer, two major gynecologic diseases that are frequently associated with each other in women.

The work was reported in an online publication in Nature Medicine on Dec. 26.

Endometriosis is a gynecologic disease characterized by the presence of functional uterine tissue outside the uterus. This disease is extremely prevalent in the general population and is a major cause of infertility; moreover, women with a long history of endometriosis are at an increased risk for developing endometrioid ovarian cancer, a subtype of epithelial ovarian cancer. Ovarian cancer is the most deadly of gynecological cancers, due to the difficulty of early detection and lack of effective therapies.

Not only did we create new mouse models for two important gynecologic diseases, but also this research provided evidence for a genetic link between endometriosis and ovarian cancer and may explain why some women who have endometriosis also develop ovarian can-

In part that mismatch was due to the presence of soots and chars. Collectively, these solids include diesel soot from buses and cinders from forest fires. Black carbons get carried out to sea and washed out by rainwater and end up in places like Boston Harbor.

There, says Gschwend, they mix with the mud and grab hold of many organic chemical pollutants, making it harder for the pollutants to move out of the mud and into animals.

Taking that process into account, Amy Marie Accardi-Dey (Ph.D. 2003) discovered that predictions of chemical levels using animal samplers were off by a factor of 40. Accardi-Dey did her graduate work in the joint program between MIT and the Woods Hole Oceanographic Institution.

Since animals are ify indicators of what’s around them in mud and water, various researchers decided to put out a material that would absorb the chemical of interest. Gschwend describes the first material chosen as “little bags of fat,” plastic bags filled with the triglyceride triolein. Rachel Adams, a Ph.D. student in civil and environmental engineering, found that the bags often broke and lost the triolein.

Eventually researchers realized that the plastic alone could do the trick.

That plastic, Gschwend points out, is cheap, strong, easy to clean, and can be made from the sort of plastic that is typically used in food packaging. The bags of fat could be placed in a plastic milk bottle knowing you can’t rinse out the plastic,” he said. “It’s going to sink for a long time because the hydrophobic compounds have diffused into it.”

Working in Quincy and Duxbury Bay, Gschwend and colleagues insert plastic strips into the mud and water column to accumulate chemicals for a day or two. Back in the lab, they analyze the strips to identify and quantify the chemicals.

Thus far, Gschwend says that the amount of pollutants indicated by the plastic samplers is less than what would have been expected, reinforcing the inference of the model calculations. The finding is that certain chemicals are being dif- fused from mud into water, while others appear to be moving from water into the mud.

A new study from the MIT Center for Cancer Research provides the first mouse models of endometriosis and endometrioid ovarian cancer, two major gynecologic diseases that are frequently associated with each other in women.

The work was reported in an online publication in Nature Medicine on Dec. 26.

Endometriosis is a gynecologic disease characterized by the presence of functional uterine tissue outside the uterus. This disease is extremely prevalent in the general population and is a major cause of infertility; moreover, women with a long history of endometriosis are at an increased risk for developing endometrioid ovarian cancer, a subtype of epithelial ovarian cancer. Ovarian cancer is the most deadly of gynecological cancers, due to the difficulty of early detection and lack of effective therapies.

Not only did we create new mouse models for two important gynecologic diseases, but also this research provided evidence for a genetic link between endometriosis and ovarian cancer and may explain why some women who have endometriosis also develop ovarian cancer,” said Tyler Jacks, leader of the MIT Cancer Research Center, who is also the David H. Koch Professor of Biology and an Investigator for the Howard Hughes Medical Institute.

Other MIT CCR researchers include technical assistant Sarah Shafer and graduate student Andrew Elia of the Koch Graduate Fellowship.

Support for this work comes from the Jane Coffin Childs Foundation, the National Institutes of Health, and the Wellcome Fund. Manke is supported by a Koch Graduate Fellowship.
Spacetime wave orbits black hole

Astronomers have discovered evidence for physics beyond Einstein’s theory of general relativity. This discovery shows a galactic black hole being orbited by a rope in spacetime—a distortion in the fabric of space itself.

QPO flickering is caused by the fabric of space itself churning around the black hole in a wave. This is known as Lense-Thirring precession, which evolves out of Einstein’s theory of general relativity.

Imagine the accretion disk as a music CD. The wave produced by the spacetime warp would increase the area of the flat disk. The brightness of a black hole depends on the area. So, this momentary increase in area surface, “flickering” at a frequency of 1 to 2 hertz, could explain the periodic brightness changes in the iron K line. Each time the hot iron gas encounters the spacetime warp, the light gets a jolt and the broad iron K line changes its appearance.

Miller and Homan caution that this is only one explanation of their observation, and that other explanations may be possible.

Giant telescope will keep an eye on planets in other solar systems

Astronomers have seen evidence of hot Jupiter riding a ripple in spacetime around a black hole. This spacetime wave, or QPO, would create a new phenomenon that goes beyond Einstein’s theory of general relativity.

The observations presented Jan. 10 at a meeting of the American Astronomical Society in San Diego, confirm an important theory about how a black hole’s extreme gravity can stretch light. The data also paint an intriguing image of how a spinning black hole can drag the fabric of space around with it, creating a convoluted spacetime sea that distorts everything falling into the black hole.

The team of the Harvard-Smithsonian Center for Astrophysics and Jesse Horner, assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences, observed an unusual QPO in the light emitted from the supermassive black hole at the center of the galaxy M87. (The QPO is a regular periodic signal in the X-ray light emitted from the supermassive black hole at the center of the galaxy M87.)

Schechter said. "At the very top of that list would be the direct observation of objects not as massive as the stars but as massive as the giant planets. This telescope will be dedicated to developing a giant telescope that among other things will allow direct observations of planets orbiting stars in solar systems beyond our own.

On Dec. 13 the Carnegie Observatories of the Carnegie Institution signed an agreement with the University of Arizona, University of Michigan, University of Texas at Austin, and Texas A&M University. The new telescope will be composed of seven, 8.4-meter primary mirrors arranged in a focal pattern. It builds on the successful heritage of the two 6.5-meter Magellan telescopes, the first of which began science operations in early 2001. The same individuals involved in the building of Magellan constitute the core of the GMT design group," Schechter said.

What role do ground-based telescopes play in the era of satellite telescopes like the Hubble? For one, said Schechter, “ground-based telescopes can be much bigger, which is important because a telescope’s gathering power is proportional to the square of its diameter. The Hubble is only 2.4 meters in diameter, and the next-generation space telescope, which ought to be finished at about the same time as the GMT, will be smaller than the present Magellan telescopes.”

The observatory’s lead author on the article to be published in The Astronomical Journal, Dr. Jacques Bai (PSC) has been encouraging a wider effort to raise funds where he sees the greatest need. "One of the issues that always concerns us is whether our contribution reaches those who are suffering. You can be assured that every dollar of your contributions is being sent to MIT-Prajnopaya directly,” said Priyadarshi, who will go to Sri Lanka to help with these relief efforts. He asks that contributions be sent to MIT-Prajnopaya, which is a 501(c)3 nonprofit organization, at 60 Hartwell Road, Carlisle, MA 01741, or to MIT-Prajnopaya in Room W11-004.
Vacant looks could be Eureka! moments

Nearly 20 percent of American adults say they think more often than not, according to the 2005 Lemelson-MIT Invention Index study, which gauges Americans’ attitudes toward invention and innovation. So don’t think of your commute as being stuck in bumper-to-bumper traffic; think of it as a potential breeding ground for creativity.

Survey respondents said the ideal conditions for creative thinking are solitude (66 percent) and quiet (47 percent), although 41.5 percent said while working with others, and 23.3 percent said that being under pressure creates the ideal outcome for creativity.

“Many Americans feel they spend half their lives in the car, but we were surprised by just how many people believed it was a fire, but he gathered up his six-month-old kitten, Mays (“she tried to hide behind the coach, but I dragged the coach out and got her,” said Austin) and he and his roommates headed outside. “When I looked back there were flames coming out,” he said. It took firefighters 12 hours to extinguish the blaze. Though he had not slept and was still reeling, Austin showed up for hours the next morning. “There was nothing I could do at the apartment,” he said. “I couldn’t fix it so I might as well be at work.”

One of his freshmen students, Stephanie Chiang, saw Austin that morning. “Immediately, she knew something was wrong. “He looked exhausted,” she said. When she learned of the fire Chiang sprang into action, e-mailing the class, her dorm (McCormick Hall), even alumni on the dorm’s mailing list. In just one week, she had gathered enough funds to buy Austin on the morning of the last class of the semester. “He has been a really good TA, always open to help,” said Chiang. “It was time for someone to help him.”

Burned-out but diligent, TA gets help from students

When chemistry teaching assistant Wes Austin showed up for his office hours on Dec. 1 after splitting the home run and most of his possessions ruined in a fire, his students were touched by his diligence.

A week later the freshmen in general chemistry (3.11) presented Austin with cards signed by each of them and more than $600 in cash they had collected to help him get back on his feet. “I started to cry,” said Austin. “It was absolutely awesome.”

The cause of the fire that devastated the 10-unit apartment building in Cambridge’s Central Square is still unknown. Austin, a Ph.D. candidate who bought his condominium in July, was home at 10:30 p.m. when he heard the fire alarm. Being a veteran of false alarms, Austin didn’t think it was a fire, but he gathered up his six-month-old kitten, Mays (“she tried to hide behind the coach, but I dragged the coach out and got her,” said Austin) and he and his roommates headed outside. “When I looked back there were flames coming out,” he said. It took firefighters 12 hours to extinguish the blaze.

Though he had not slept and was still reeling, Austin showed up for hours the next morning. “There was nothing I could do at the apartment,” he said. “I couldn’t fix it so I might as well be at work.”

One of his freshmen students, Stephanie Chiang, saw Austin that morning. “Immediately, she knew something was wrong. “He looked exhausted,” she said. When she learned of the fire Chiang sprang into action, e-mailing the class, her dorm (McCormick Hall), even alumni on the dorm’s mailing list. In just one week, she had gathered enough funds to buy Austin on the morning of the last class of the semester. “He has been a really good TA, always open to help,” said Chiang. “It was time for someone to help him.”

Austin’s unit was spared from the fire, but the extensive water damage ruined photos, furniture and appliances. Later, looters stole his standing mixer, video game unit, some clothing and other things.

Chiang and other volunteers received donations of checks and cash, including one check from an alumna. They also received offers of furniture and other items to donate to Austin, who is currently renting an apartment in the same area. Though Austin was insured, he needs to pay for all the new items up front. “It will be okay eventually and everything irreplaceable was saved,” he said. “But this helps a lot.”

It was wonderful to see how much support he is by his students,” said Catherine Drennan, an associate professor of chemistry who taught Austin and watched the Dec. 9 presentation. “It was also heartwarming to observe the generosity of spirit of this freshmen class.”

Though thrilled and able to help, Chiang said she was not surprised by the kindness in her fellow students. “They are very close knit, like a community,” said Chiang. “We all help each other out.”

Poetry explored daily during January

The IAP series, Pleasures of Poetry, now in its 8th consecutive season, offers a daily two-hour session of reading and discussing poems that are selected and presented by members of the MIT literature faculty, staff and students.

The sessions, which are open to the public, are held in Room 16E304 weekdays from 1 to 2 p.m. through January.

This year’s selection—a packet from the literature department—offers a range of poems, from ancient to contemporary, and a range of presenters including the MIT rabbi and Episcopal chaplain.

Professor David Thorburn, head of the literature section and director of the MIT Communications Forum, is the series organizer.

“The pleasures of poetry are diverse, powerful and subtle. Perhaps this explains the success of our annual adventure in poetry during IAP, for diversity, intellectual power and subtlety are quintessential MIT virtues,” said Thorburn. “This year’s roster is especially rich, I think, a testament to the range of interest among our students and also, of course, to the amazing reach of poetry as an art. This series is inspiring to me for many reasons, not least because it reminds me of the intimate, enduring friendship of poetry, science and technology.”

The series began last week (Jan. 3) with Professor Stephen Taubes on shore, on John Clare; Professor Howard Eliland, on Tennyson; and Professor James Buxard on T.S. Eliot. Rabbi Ben Lanctot moderated a discussion of selected psalms.

In each session, lively discussion followed a brief presentation of biographical information and a reading of the poems. Participants explored use of rhyme, meter, setting and tone in each poem; the relevance of historical and cultural influences; and the ever-engaging question, what is a poem anyway?

This year’s sessions include presentations by professors of literature David Everett on works by Robert Frost (Jan. 12). David Thorburn on Michael Ryan (Jan. 24); Wyn Kelley on Puritan poems and Noel Jackson on Keats (Jan. 20). Presentations by other entusiasms include Anne Hudson, administrative assistant to the arts, who works by Bob Dylan (Jan. 18). Chaplain Amy McCrath on selections from the Book of John (Jan. 20). Julian Wheatley, senior lecturer in foreign languages and literature, on poems from the Chinese and Burmese (Jan. 25); and Stephen Pepper, administrative assistant in academic services, on Barry Spacks (Jan. 26).

Newspaper of unknown origin appeared Jan. 3 on Briggs Field. MacGregor House house is in the background, while geese feed nearby.
Un-leveling the playing field

What happens when a choreographer pulls the floor out from beneath her dancers? What happens when gravity shifts beneath their feet?

"TILT" is a collaboration between artists Ellen Sebring (M.S.VisS 1986) and acclaimed Boston choreographer Paula Josa-Jones, who explores that new frontier. The performance combines large-screen video, live dancers, and a gravity-disrupting mechanism called a "levitron" to discover new realms of movement.

Starting Sunday, Jan. 16, the artists will conduct a four-day workshop for students to create performance elements for "TILT," including choreography, lighting, and a rudimentary levitron designed by Geoff Benson. The workshop will culminate in a lecture demonstration on Saturday, Jan. 22 at 3 p.m. in Kresge Auditorium. Performers will include Alissa Cardone and Ingrid Schatz, both members of Paula Josa-Jones’ dance company Performance Works, and members of MIT’s Kinaesthetics Lab, a student choreography group.

The performers will experiment with ways to mirror on stage the tilt effect, while also creating a camerawork video for the videotape. Sebring notes that when gravity is disrupted, the dancers are thrown out of balance, evoking new types of movement. "We hope to get some ideas as to how to build a more sophisticated levitron in the future," she said.

Josa-Jones and Sebring have collaborated for the past 15 years on a wide range of works for dance and film. Most recently, they created a video version of "RIDE," Josa-Jones’ work for dressage horses and dancers currently under development as a Broadway-style production. "TILT" was shown in video form at last year’s Dance on Camera Festival, and is scheduled to be shown at this year’s festival at Lincoln Center.

Sebring was a Fellow at the Center for Advanced Visual Studies from 1987–1993 and is currently an research associate in the Visualizing Cultures project under the direction of professors John Dowser and Shiguro Miyagawa. Sebring was selected by the American Film Institute’s Directing Workshop for Women to direct a film in Hollywood; she has received a residency to compose music for "DIVE," an interactive video installation featuring Josa-Jones, which will also be screened at the Jan. 22 event in Kresge.

Employees share artistic talents

Erika Hartweg knows a thing or two about balancing multiple interests and tasks. She’s a research specialist in electron microscopy, working in the Biology department, who is also a potter, having learned the craft with the MIT Student Art Association. She’s a printmaker who is fascinated with the patterns of daily life. She’s a busy woman who takes flute lessons in her spare time.

"It is the variety of the many sides and talents of MIT employees, Hartweg is also the curator of a new show by members of Artists Behind the Desk titled "Artists by Night…Administrators by Day." The exhibition is not only about art on the walls, but also about the duality of the lives of the artists behind the desks," she said. Hartweg. The exhibition includes photography, watercolors, paintings with oil pastels, and computer art (installation).

Library hours are Monday-Thursday 9 a.m. to 6 p.m., Friday 9 a.m. to 6 p.m., Saturday 1 to 6 p.m. and Sunday 1 to 8 p.m.

—Lynn Heimann, Office of the Arts

List Center gets accreditation and grant for Internet work

The List Visual Arts Center has received a prestigious grant for $98,908 from the federal Institute of Museum and Library Services. With this grant, the LVAC will launch "Beyond Ames Street," a multifaceted approach to using web-based technology to connect with audiences more deeply. The effort to increase online projects will include a description of each work, artist/architect biography, and essays by critics and curators. List earns accreditation

The center has again achieved the highest recognition for a museum—accreditation by the American Association of Museums. AAM Accreditation signifies excellence within the museum community. Of the nation’s nearly 18,000 museums, only about 750 are currently accredited.

Surrounded by an expanse of tree-lined plazas. Federal cost-cutting measures, however, eliminated many of the best features of Yamaski’s design and forced contractors to cut corners in the construction of the project. Still, it was hailed in the national press as an innovative application of modernist design principles to the problem of chronic urban housing shortages.

Most families that settled in the project moved into Pruitt-Igoe in their improved housing conditions. They worked to establish a playground, recreation center, public library branch, Boy Scout Troop, day-care center and health clinic. Over time, however, the project fell into decline, and in 1972 the housing authority made the historic decision to tear it down. Today, the reasons for the project’s decline continue to be debated, and Pruitt-Igoe has become a symbol of policy and design failure.

The exhibition is curated by Joseph Bealcutt, assistant professor of American Studies at Saint Louis University, along with graduate students in the American Studies Program. Artworks and images are drawn from the collections of the Mercantile Library, the Missouri Historical Society, the St. Louis Post Dispatch Archives, St. Louis Public Library General Records, Washington University Special Collections, and the University Archives and private collections.

Late-Night Speed Viewing

The fast-forward, fugu state of multitasking gains new meaning in Jason Salavon’s video artwork, which allows the viewer to simultaneously watch the opening monologues of 64 nights of three TV shows in just three minutes, 35 seconds. Salavon, an American video artist, created "The Late Night Triad" by obsessively recording hundreds of hours of programming from "The Tonight Show with Jay Leno," "Late Night with Conan O’Brien," and "Late Show with David Letterman." He then wrote code in the C programming language that generates the frame-by-frame mean average of pixel values from the shows. The resulting looped triptych projection is accompanied by the averaged sound from all of the programs, resulting in an experience in which the viewer sees and hears all 192 shows simultaneously. The work can be seen 2/4/7 at the Media Test Wall in Building 56 during January. Watch it if you can.
MIT EVENT HIGHLIGHTS

JANUARY 12 - 16

MIT Tech Talk

Science/ Technology

Music

Film

Sports

Humanities

Business/ Money

Architecture/ Planning

Performance

Special Interest

Featured Event

“They Look Like Priests”

The MIT Student Art Association (SAA) published a 2005 calendar that matches images made by SAA artists to quotations by Lao Tzu, the sixth-century B.C. Chinese philosopher. The calendars sell for $15 each; $12 for students (bulk discounts are offered). To order, e-mail SAAhelp@mit.edu. "They Look Like Priests" features the image of a priest, with the text: "They look like priests..." followed by a list of the creators and their works.

Go Online! For complete events listings, see the MIT Events Calendar at: http://events.mit.edu.

EDITOR'S CHOICE

PSC TSUNAMI RELIEF PROJECT

Ongoing fund-raising for the Sewardslon Foundation, UNICEF, and a PSC Fellowship in Southeast Asia.

RELIEF PROJECT

AMERICAN JUDAISM

Exhibiting the history and accomplishments of American Jews, with lecture following.

TILT A VIDEO DANCE

Collaboration by video artist Ellen Sebring (S.M.VisS '86) and choreographer Paula Josa-Jones.

MIT EVENT HIGHLIGHTS

JANUARY 17 - 23

MONDAY

January 17

Martin Luther King, Jr. Holiday Institute Closed

TUESDAY

January 18

Introduction to Self Defense Skills Course

Focus on practical ground-fighting skills; self-defense from knife, gun, and blunt weapons and from multiple attackers. For beginners.

WEDNESDAY

January 12

Physics IAP: Feynman Films Symmetry in Physical Law, Noon-1:30pm. Room 6-120, 253-6259.

The Perils of Understanding Natural Hazards

Professor Kerry Emanuel talks about New England’s hurricane risk. Noon. Room 54-915, 253-3382.

THURSDAY

January 13

Knit By Night

Share knowledge or learn from scratch for an hour of stitching. Bring project. Also on Jan. 20 and 27. Noon-1:30pm. Room 2-328.

Bridge Tournament

Teams of four tournament. Noon-6pm. Room 2-290.

FRIDAY

January 14

Artists by Physics Administrators

Painting: Students Behind the Desk exhibition feature works in a variety of media. 9am-6pm. Room 7-238.

Bake Sale and Raffle

Assorted baked goods from Support Staff and other members of the MIT community. Proceeds go to tsunami relief. Also Jan 21 and 28. Sale 10am-2pm. Raffle: 1:45 pm. Lobby 10. 258-7037.

SATURDAY

January 15

Visualizing Physics: Transforming Brain Science

Learning at MIT: Get an insider’s view of how MIT is redesigning the way it teaches physics. Noon-5pm. MIT Museum. 253-4444.

SUNDAY

January 16

IVC Urban Plunge

A week of hands-on urban ministry and volunteer opportunities. All over Boston.

CONCERTS AND PERFORMANCES

Go Online! For complete events listings, see the MIT Events Calendar at: http://events.mit.edu.

REPRESENTATIONAL ARTS

FILM

TWO CASE STUDIES AT LAUNCH VEHICLE MISHAPS

Colonel Peter Young discusses the circumstances leading to two launch vehicle mishaps. 2pm. Room 33-206. 253-1084.

AMERICAN JEWISH:

Biblical, Believing, and Belonging

Rabbi Ben Lancton speaks on the current state of American Judaism. 7:10pm. W11 Boardroom. 253-2982.

EDUCATION

VISITING PROFESSIONALS

SCIENCE PROGRAM

Saturday Night

Astronomy at MIT

Noon-6pm. Room 2-290.

ARTS AND CULTURE

MIT COMEDY

Who’s Line Is It, Anyway?

Tonight Show with Jay Leno, Late Night with Conan O’Brien, Late Show with David Letterman. 24-hours a day. Media Test Hall, Whitaker Bldg 56.

SPORTS

GARDEN STATE

100. 258-8881.

ATHLETICS

WOMEN’S WEEKEND

Lady Engineers’ Club

Saturday Night…

1pm. Zesiger Sports and Fitness Center. 253-5136.