Susan Hockfield elected MIT’s 16th president

President-elect displays warmth and crowd-appeal

Elizabeth Thomson and Denise Brehn
News Office

A standing-room-only crowd in Room 10-250 greeted President-elect Susan Hockfield, her husband Tom, and their daughter Elizabeth with a long and thundering standing ovation at a special community meeting on Aug. 26, the day she was elected the 16th president of the Institute.

Thank you, everyone, for such a warm, warm welcome to this community,” said Hockfield, who drew additional applause throughout her remarks, including when she described her picture of MIT’s future.

“I can distill this into a very simple picture. I want MIT to be the dream of every scholar and every artist who draws inspiration to the idea of working in a hotbed of innovation in service to humanity. Hockfield said.

“Thank you, everyone, for such a warm, warm welcome to this community,” said Hockfield, who drew additional applause throughout her remarks, including when she described her picture of MIT’s future.

“I can distill this into a very simple picture. I want MIT to be the dream of every scholar and every artist who draws inspiration to the idea of working in a hotbed of innovation in service to humanity. Hockfield said.

“They are the best of MIT and the best of MIT’s future.

President Charles M. Vest also received a standing ovation when Hockfield saluted him “for his extraordinary leadership—both here at MIT and on the national scene.

“There is no greater privilege or honor that could be given to anyone than to be [named] presidential leader in the year of MIT. He also gave her two items key to the position. First, noting that Room 10-250 is the site for faculty meetings, which she’ll soon preside over, Vest handed her a copy of “Roberts’ Rules of Order.”

“My distinguished predecessor Paul Gray gave me his own personal copy, and today it’s my privilege to pass [it] on to you,” said Vest, to laughter and applause.

Next, noting that Hockfield—Yale’s provost—recognizes the value of resources (“a nice word for money,” Vest said), he handed her a decorated coffee can filled with shredded money. Quipped Dana Mead, who also spoke at the meeting, “As chair of the MIT Corporation I hate to see that stuff ground up into dust.”

Professor Rafael Bras, chair of the MIT Faculty, also warmly welcomed Hockfield. “It is indeed a very happy and momentous occasion for all of us. With you, once again we get a new president who represents the best in leadership, one who the world will respect.”

After the short meeting, the large crowd flowed out into Lobby 10 and onto Killian Court, where Hockfield chatted with small groups of faculty, alumni, staff and students. Laughter and flashbulbs marked the celebratory mood, as people enjoyed the refreshments and waited patiently to be the next to greet the president-elect.

A group of pre-frosh just winding up their seventh week of Interphase courses on campus were among those anxious to meet and greet their new president. They were greeted with the same warmth she had shown them minutes before during the community meeting.

In introducing her, Mead said, “As a strong advocate of the vital role that science, technology and the research university play in the world, and with an exceptional record of achievement in serving faculty and student interests, Dr. Hockfield is clearly the best person to lead MIT in the years ahead. She brings to MIT an outstanding record as teacher, scientist and inspirational leader with a reputation for bringing out the best in all the people with whom she works.”

James A. Champy, who chaired the presidential search committee for the MIT Corporation, said, “Dr. Hockfield emerged from a stellar field of candidates as the best person to lead MIT to new frontiers.”

Susan Hockfield, a distinguished neuroscientist and provost at Yale University, is the 16th president of MIT, succeeding Charles M. Vest, who has led the 139-year-old Institute since 1990. Hockfield is expected to take office in early December.

The MIT Corporation elected Hockfield during a special meeting on Aug. 26. Corporation Chair Dana G. Mead introduced her to the public at a press conference in the Faculty Club immediately following the election, and to the MIT community at a special community meeting in Room 10-250 that afternoon. Community members flocked to the meeting, quickly filling the room and overflowing to Lobby 10 to watch the event on MIT Cable TV.

At a reception in Lobby 10 and on Killian Court following the meeting, Hockfield spoke informally with MIT faculty, students (including incoming freshmen), alumni and staff, who welcomed her with the same warmth she had shown them minutes before during the community meeting.

Thank you, everyone, for such a warm, warm welcome to this community,” said Hockfield, who drew additional applause throughout her remarks, including when she described her picture of MIT’s future.

“I can distill this into a very simple picture. I want MIT to be the dream of every scholar and every artist who draws inspiration to the idea of working in a hotbed of innovation in service to humanity,” said Hockfield.
Eric Grimson and Duane Boning announced the appointment of professors Eric Grimson and Duane Boning as the new associate heads of EECS.

"Both Eric and Duane have demonstrated outstanding accomplishment in teaching and research, and a deep commitment to education and MIT. We are grateful to them for their willingness to accept such a demanding and important responsibility," said Dean of Engineering Systems Division Daniel Hastings.

Boning has been associate director of the MIT Microsystems Technology Laboratories since 1998. He is also serving as the codirector for undergraduate education for the Cambridge-MIT Institute.

Praise for past leadership

In thanking John Guttag, for his "extraordinary leadership for more than 10 years as associate head and department head," Mag

nanti said, "he is an enterprise as large and as complex as EECS is indeed a challenge, and many great things have happened in the department during John's tenure. John has been especially effective in faculty hiring and mentoring, in fund-raising and in programming and development of the Stata Center. He steps down as head of the very best electrical engineering and/or computer science department in the world."

Hamann thanked Professor Barbara Liskov, who steps down as associate department head on Aug. 31. "The department has benefited tremendously from her leadership and wisdom," Mag

nanti said.

Anders appointed chief facilities officer

William J. Anders was appointed the chief facilities officer at MIT, effective Sept. 1. Anders will lead a department of about 625 people, including professional and support staff, skilled trades people, and bargaining unit employees, in providing utilities, support services such as custodial and grounds maintenance, along with design and construction services.

Anders succeeds Victor Kliman, who stepped down on June 30 after leading the department for more than a decade.

Anders comes to MIT from Pennsylvania State University where he was the associate vice president for Physical Plant responsible for all aspects of the university including master planning, space planning, design, construction, operations, maintenance, real estate management, and environmental health and safety for Penn State’s 24 campuses. He had responsibility for more than 1,100 professional, administrative and skilled employees who support a physical plant composed of 20,000 acres of land and more than 1,300 buildings with 22 million square feet of space.

"Bill Anders is one of the most accomplished facilities officers in the country," Curry said. "He will bring to MIT a keen mind, engaging demeanor, and commitment to excellence—no less a power

ful ethic—which are the hallmarks of the Institute," Curry said.

A Boston native, Anders received the B.S. degree in civil engineering from Tufts University in 1969. He started working at MIT in Cambridge, Massachusetts, in 1970 and was appointed director of the MIT University Support Services in 1975.

Anders has been associate provost and search committee chair for the chief facilities officer at MIT, effective from 2001-2004.

"Bill Anders is the right person for this position," said Curriculum. "I look forward to working with him and our department and MIT. We are grateful to them for their willingness to accept such a demanding and important responsibility."
Brain shows more plasticity than previously believed

Mice “rewired” to receive visual cues in the hearing region of their brains learned to respond to a fear-inducing flashing light as if they had heard it instead of seen it, researchers from MIT’s Picower Center for Learning and Memory reported in the Aug. 23 online issue of Nature Neuroscience.

This research shows that even the adult brain is far more plastic, or adaptable, than previously believed. It extended to humans, this may mean that in the future, individuals with brain damage from aging, disease or injury may be able to have stimuli from the outside world routed in new ways to major brain structures—even those responsible for emotional responses and learning.

This work also sheds light on how emotional responses are learned, illustrating the ability of widely different external stimuli to elicit a common emotion such as fear. The research is the result of a collaboration between the laboratories of Mriganka Sur, the Sherman Fairchild Professor of Neuroscience and head of the MIT Department of Brain and Cognitive Sciences, and Susumu Tonegawa, director of the Picower Center and professor of biology.

“This paper demonstrates that novel pathways can lead to novel learning. This points to the tremendous plasticity of emotional responses in the brain,” Sur said. Sur’s laboratory showed in 2000 that when an animal’s brain is rewired so that visual stimuli, such as a flashing light, are given to the brain in a place associated with fear, the visual stimuli can be used to elicit a fear response.

Mice typically acquire a fear response more quickly if a signal tied to danger is a sound rather than a light. In this study, mice learned that a certain sound preceded a mild shock to one foot. After only one repetition, the mice froze in fear when they heard the sound. In contrast, mice that received a shock in connection with a visual cue had to experience many more repetitions before they realized that the light meant that a shock was coming.

Mice that had been “rewired” so that visual information was routed to the hearing part of their brains rather than to the visual part learned rapidly to equate the light with the shock. The visual information was passed on, as if it were a sound, from the auditory part of their thalamus to the amygdala, a structure deep within the brain critical for fear conditioning behavior.

In addition to Sur and Tonegawa, this work was done by postdoctoral fellow Jessica R. Newton, brain and cognitive sciences graduate student Charlene Ellsworth, and research scientist Tsuyoshi Miyakawa in Tonegawa’s laboratory. The work is supported by the National Institutes of Health.

Sonic dab relieves pain of the jab

Denise Brehm

Fear of needles could become a thing of the past. A painless device approved Aug. 17 by the FDA could offer relief to children and adults who hate the sharp stab of pain that comes with needles and IVs.

The medical device, called SonoPrep, uses an ultrasonic method created by MIT researchers to make skin temporarily more permeable. A painless 15-second treatment by the new device, followed by an application of lidocaine cream, will allow anesthetize the skin in five minutes. By extending to humans, this may mean that in the future, individuals with brain damage from aging, disease or injury may be able to have stimuli from the outside world routed in new ways to major brain structures—even those responsible for emotional responses and learning.

This work also sheds light on how emotional responses are learned, illustrating the ability of widely different external stimuli to elicit a common emotion such as fear. The research is the result of a collaboration between the laboratories of Mriganka Sur, the Sherman Fairchild Professor of Neuroscience and head of the MIT Department of Brain and Cognitive Sciences, and Susumu Tonegawa, director of the Picower Center and professor of biology.

“This paper demonstrates that novel pathways can lead to novel learning. This points to the tremendous plasticity of emotional responses in the brain,” Sur said. Sur’s laboratory showed in 2000 that when an animal’s brain is rewired so that visual stimuli, such as a flashing light, are given to the brain in a place associated with fear, the visual stimuli can be used to elicit a fear response.

Mice typically acquire a fear response more quickly if a signal tied to danger is a sound rather than a light. In this study, mice learned that a certain sound preceded a mild shock to one foot. After only one repetition, the mice froze in fear when they heard the sound. In contrast, mice that received a shock in connection with a visual cue had to experience many more repetitions before they realized that the light meant that a shock was coming.

Mice that had been “rewired” so that visual information was routed to the hearing part of their brains rather than to the visual part learned rapidly to equate the light with the shock. The visual information was passed on, as if it were a sound, from the auditory part of their thalamus to the amygdala, a structure deep within the brain critical for fear conditioning behavior.

In addition to Sur and Tonegawa, this work was done by postdoctoral fellow Jessica R. Newton, brain and cognitive sciences graduate student Charlene Ellsworth, and research scientist Tsuyoshi Miyakawa in Tonegawa’s laboratory. The work is supported by the National Institutes of Health.

I-Neighbors encourages local bonds

Critics say the Internet increases global communication at the expense of real-world communities, but researchers at MIT have created an online service called I-Neighbors, designed to help neighbors strengthen the ties that bind them in their local community.

I-Neighbors grew out of three years of research by Keith Hampton, assistant professor of sociology in the Department of Urban Studies and Planning. During the work in response to concerns that American citizens have experienced a decline in their neighborhood and community participation over the past 30 years. The free web site, which can create a homepage for every community in the Unites States and Canada, provides community groups with a system to organize local events and share information on local services, and connects neighbors with one another.

It includes a local directory, shared photo album, neighborhood gossiping, opinion polling, and a carpool system.

“Much research has focused on the ability of the Internet to bring people over long distances, but we wanted to focus specifically on what happens when local information is used locally,” said Hampton. “We are hopeful that I-Neighbors will lead to neighbor- hoods that are safer, better informed, have a stronger sense of community and are better equipped to deal with local problems.”

Hampton and his students studied the residents of four Boston area neighborhoods for two years. Three of the locations—a suburban neighborhood, an apartment building and a gated residential community—were given the I-Neighbors services designed to facilitate neighbor- hood social networking. The fourth, an area in the suburbs, was used as a control.

Within a year, residents of the neighbor- hoods that were using the Internet could see measurable increases in the number of local social ties and the sense of community in two of the areas where I-Neighbors sites and messaging were introduced. The changes included the formation of new neighbor- hood social ties and higher levels of commu- nity participation, both on and off the Internet.

Of the three experimental neighbor- hoods, the suburban neighborhood used the I-Neighbors services and experienced the greatest increase in community. Nearly half (46 percent) indicated that I-Neighbors increased their “sense of community,” 25 percent reported that it increased neighborhood safety, and 40 percent reported that it increased their neighbors’ ability to react to important issues or emergencies.

Neighbors also were less likely to rely on visible social characteristics such as age, the presence of children, and physical proximity when forming new ties. Instead they used I-Neighbors to learn about their neighbors’ backgrounds and interests.

The research was supported by the National Science Foundation, the NEC Corporation Fund for Research in Computing Machinery, and Microsoft Research.

Fear of needles could become a thing of the past.

A painkilling device approved Aug. 17 by the FDA could offer relief to children and adults who hate the sharp stab of pain that comes with needles and IVs.

The medical device, called SonoPrep, uses an ultrasonic method created by MIT researchers to make skin temporarily more permeable. A painless 15-second treatment by the new device, followed by an application of lidocaine cream, will allow anesthetize the skin in five minutes.

By extending to humans, this may mean that in the future, individuals with brain damage from aging, disease or injury may be able to have stimuli from the outside world routed in new ways to major brain structures—even those responsible for emotional responses and learning.

This work also sheds light on how emotional responses are learned, illustrating the ability of widely different external stimuli to elicit a common emotion such as fear. The research is the result of a collaboration between the laboratories of Mriganka Sur, the Sherman Fairchild Professor of Neuroscience and head of the MIT Department of Brain and Cognitive Sciences, and Susumu Tonegawa, director of the Picower Center and professor of biology.

“This paper demonstrates that novel pathways can lead to novel learning. This points to the tremendous plasticity of emotional responses in the brain,” Sur said. Sur’s laboratory showed in 2000 that when an animal’s brain is rewired so that visual stimuli, such as a flashing light, are given to the brain in a place associated with fear, the visual stimuli can be used to elicit a fear response.

Mice typically acquire a fear response more quickly if a signal tied to danger is a sound rather than a light. In this study, mice learned that a certain sound preceded a mild shock to one foot. After only one repetition, the mice froze in fear when they heard the sound. In contrast, mice that received a shock in connection with a visual cue had to experience many more repetitions before they realized that the light meant that a shock was coming.

Mice that had been “rewired” so that visual information was routed to the hearing part of their brains rather than to the visual part learned rapidly to equate the light with the shock. The visual information was passed on, as if it were a sound, from the auditory part of their thalamus to the amygdala, a structure deep within the brain critical for fear conditioning behavior.

In addition to Sur and Tonegawa, this work was done by postdoctoral fellow Jessica R. Newton, brain and cognitive sciences graduate student Charlene Ellsworth, and research scientist Tsuyoshi Miyakawa in Tonegawa’s laboratory. The work is supported by the National Institutes of Health.

Critics say the Internet increases global communication at the expense of real-world communities, but researchers at MIT have created an online service called I-Neighbors, designed to help neighbors strengthen the ties that bind them in their local community.

I-Neighbors grew out of three years of research by Keith Hampton, assistant professor of sociology in the Department of Urban Studies and Planning. During the work in response to concerns that American citizens have experienced a decline in their neighborhood and community participation over the past 30 years. The free web site, which can create a homepage for every community in the Unites States and Canada, provides community groups with a system to organize local events and share information on local services, and connects neighbors with one another.

It includes a local directory, shared photo album, neighborhood gossiping, opinion polling, and a carpool system.

“Much research has focused on the ability of the Internet to bring people over long distances, but we wanted to focus specifically on what happens when local information is used locally,” said Hampton. “We are hopeful that I-Neighbors will lead to neighbor- hoods that are safer, better informed, have a stronger sense of community and are better equipped to deal with local problems.”

Hampton and his students studied the residents of four Boston area neighborhoods for two years. Three of the locations—a suburban neighborhood, an apartment building and a gated residential community—were given the I-Neighbors services designed to facilitate neighbor- hood social networking. The fourth, an area in the suburbs, was used as a control.

Within a year, residents of the neighbor- hoods that were using the Internet could see measurable increases in the number of local social ties and the sense of community in two of the areas where I-Neighbors sites and messaging were introduced. The changes included the formation of new neighbor- hood social ties and higher levels of commu- nity participation, both on and off the Internet.

Of the three experimental neighbor- hoods, the suburban neighborhood used the I-Neighbors services and experienced the greatest increase in community. Nearly half (46 percent) indicated that I-Neighbors increased their “sense of community,” 25 percent reported that it increased neighborhood safety, and 40 percent reported that it increased their neighbors’ ability to react to important issues or emergencies.

Neighbors also were less likely to rely on visible social characteristics such as age, the presence of children, and physical proximity when forming new ties. Instead they used I-Neighbors to learn about their neighbors’ backgrounds and interests.

The research was supported by the National Science Foundation, the NEC Corporation Fund for Research in Computing Machinery, and Microsoft Research.
MIT welcomes Susan Hockfield

Susan brings a rare blend of scientific excellence, deep intellect and curiosity, reputation as a highly effective manager, and an appreciation and zest for the promise of science and engineering in the world. She is a decisive leader who is an extraordinarily decent and ethical person, a great listener and respectful community builder.

Susan E. Whitehead
Vice Chair, Whitehead Institute for Biomedical Research
Member of the MIT Corporation

Susan’s unique and innovative perspective on leadership and the role of science in higher education distinguished her as a leading candidate for the role of MIT president. As we enter a time of new and varied challenges, her collaborative leadership style and strong vision for the future of higher education will make her an excellent asset to MIT. I'm excited to welcome her to our family.

Dedric A. Carter
Class of 1998
Member of the MIT Corporation

Professor Hockfield has made significant scientific contributions in her career, and she is highly appreciative of the creative blending of basic and applied research to address some of the most important problems of our time. This and her commitment to the social sciences, humanities and the arts point to her interest in facilitating new intellectual interactions among faculty and students in all five schools of the Institute. She is a superb choice to lead MIT.

Jerome I. Friedman
Institute Professor
Chair of the Faculty Advisory Committee

Rare is it to find such an accomplished scientist whose zeal for research is matched by her passion for enriching the greater community to which she belongs. I am confident that Susan Hockfield will propel the Institute to new intellectual heights while being receptive to student concerns and continuing MIT’s tradition as a progressive trailblazer whose actions improve the educational landscape for everyone.

Pius A. Uzamere
Class of 2004
Student Advisory Group to the Corporation Committee on the Presidency

Like every other president, Susan Hockfield’s most important contributions will be shaped, over the years, by actions, ideas, opportunities and events that cannot be predicted. That is why the search process concentrated on her values, broad understanding and vision for academia, human qualities and past accomplishments. She gets uniformly high marks in all of these dimensions.

Charles M. Vest
15th President of MIT

Noting that a provost recognizes the “value of resources,” Charles Vest, the 15th president of MIT, hands the 16th president, Susan Hockfield, a can of shredded money. Dr. Hockfield is currently the provost of Yale.
MIT’s 16th President

All of us were very impressed by Professor Hockfield’s incisive assessment of the opportunities and challenges facing MIT, her engaging personality, her ability to listen, her openness and candor, and her deep knowledge and love of the academic enterprise.

Rafael L. Bras
Chair of the Faculty

Dr. Hockfield emerged from a stellar field of candidates as the best person to lead MIT to new frontiers of innovation and leadership in research and education. She possesses a rare combination of scientific achievement, outstanding managerial talent, and an extremely engaging personal style that will serve MIT’s faculty, students and staff very well.

James A. Champy
Chair of the MIT Corporation Committee on the Presidency

All of us were very impressed by Professor Hockfield’s incisive assessment of the opportunities and challenges facing MIT, her engaging personality, her ability to listen, her openness and candor, and her deep knowledge and love of the academic enterprise.

Rafael L. Bras
Chair of the Faculty

Susan Hockfield has been an outstanding dean and provost. She has the intelligence, judgment, and interpersonal skills to be a superb president. She has a broad understanding of the future direction of science and technology, and is well prepared to assume the leadership of MIT and to take a leading role in shaping national science policy.

Richard C. Levin
President of Yale University

The MIT community applauds as President-elect Susan Hockfield takes the podium in Room 10-250 at the community meeting announcing her selection as MIT’s 16th president.
Highlights of MIT summer news

Algae transform waste into energy

Some algae are especially hungry for the tasty toxins in modern smog. With the help of MIT’s cogeneration plant, an entrepreneur is looking to transform waste into energy. Isaac Benzie, a former postdoc in chemical engineering, installed bioreactors on the cog plant to test the algae’s efficiency. (Aug 5)

MIT brains and brawn light up Athens

MIT mathematician Nate Ackerman offered proof that scientists can combine brain and brawn when he competed in Athens with the MIT alumni and faculty. He joined MIT alumni and faculty affiliated with the summer Olympics. (Aug 13)

Sergeant’s “stitch in time” streamlines MIT ROTC

The Army ROTC doesn’t give a “stitch in time saves nine” award, but that’s the spirit of the service medal presented to Staff Sgt. Joseph Howell. (Aug 5)

Gift brightens study of dark energy

MIT research in astrophysics and space science was recognized by a $7.5 million gift from the Karl Foundation. (Aug 3)

Mice cloned from malignant cancer cells

Nature can reset the clock in certain types of cancer and reverse many of the elements responsible for causing malignancy. (Aug 1)

Bloggers have impact at DNC

Bloggers’ unprecedented participation in the DNC represents a quiet, yet astounding change. (July 29)

Key to boosting brainpower

The finding that a tiny molecular change alters the number of synaptic receptors may lead to the brainpower boost in the area where long-term memories are stored. (July 21)

Dog genome assembled

Researchers released the first draft of the dog genome sequence, which could aid the characterization of dog diseases. (July 20)

Boston students grow with STEM

Some 38 students from Boston public schools spent time on campus this summer as part of STEM, an MIT program designed to reinforce math and science skills. Above, Kamisha Green (left) and Jennifer Jones clap in delight during the final program presentations. (Aug 12)

Ecuadorian-style raft launch

Four MIT students found their inner Huckleberry Finns this summer, inspired by a comment in a lecture on how metallurgy was introduced to Mexico 1,300 years ago. In the lecture, Dorothy Hosler, professor of archeology and space science was recognized for the tasty toxins in modern smog. (Aug 3)

Should Dad still drive?

New guide helps families decide if it’s time for older relatives to turn in their car keys. (June 23)

Work offers insight into metastasis

Tumors spread by reactivating and commandeering a “sleeper” protein that should have been shut off in early embryo development. (June 24)

Airlines exaggerate taxes

Airline ticket taxes add about 15 percent to the average domestic airfare, not the 26 percent sometimes claimed by airline executives. (June 18)

Technology may expand stem cell work

An MIT team developed technology that could jump-start scientists’ ability to create specific cells from human embryonic stem cells, a feat with implications for developing replacement organs. (June 14)

Significant events:

- June 14: Stem cell work
- June 23: Should Dad still drive?
- June 24: Work offers insight into metastasis
- July 19: Ecuadorian-style raft launch
- July 21: Dog genome assembled
- July 29: Key to boosting brainpower
- Aug 3: Mice cloned from malignant cancer cells
- Aug 5: Gift brightens study of dark energy
- Aug 13: MIT brains and brawn light up Athens
- Aug 17: Sergeant’s “stitch in time” streamlines MIT ROTC
- Aug 20: Boston students grow with STEM

CLASSIFIED ADS

Members of the MIT community may submit one classified ad each issue. Ads can be readmitted, but not two weeks in a row. Ads should be 20 words maximum; they will be edited. Submit by e-mail to classifieds@mit.edu or mail to Classifieds, Rm 11-400. Deadline is noon Wednesday the week before publication.

FOR SALE

Commuter Rail Pass Zone 8 purchased at North Station 7/1/04 and never used. Good for 12 rides between Boston and all stations within Zone 8 through 12/04. Half price/bst. Jenn 253-6306.

Beautiful, very comfortable, buttercream color Boston interiors couch, like new. Paid $1,100. Selling for $600. Krutie baby grand piano (5’-1” walnut). Beautiful, warm tone, needs tuning. For sale $600. keyless@mit.edu.

For Sale

Canon EOS-1D USA, body five-months old, mint condition, box, books, accessories, transferable extended warranty, $1,000. EF 28-135 mm f/3.5-4.5, warranty, four-months old, $50. Value at 253-1286 or 617-778-4357.

Dining room set: table w/ six leaves, (approx. 70 inches long), six chairs, large sideboard and glass-front china cabinet, all matching. Walnut, dark stain. $400. keyless@mit.edu.

Sleep sofa and loveseat, neutral beige color. $150/bst. Amy Favaloro at afavalor@mit.edu or 253-2495.

Dining room set: table w/two leaves, (approx. 54 x 74), six chairs, 1920’s style, sunlit rooms, borders 50 acres. $1,625. Shaun at 867-7839.

Dining room set: table w/two leaves, (approx. 54 x 74), six chairs, 1920’s style, sunlit rooms, borders 50 acres. $1,625. Shaun at 867-7839.

Fully furnished 1 bdrm. Sunny, quiet apartment near MBTA, parking extra. J. Blair at 258-2843 or 1927-864-1576.

Free—authentic Japanese tatami bed. Single, 1" walnut). Beautiful, warm tone, needs tuning. Selling for $600. Knabe baby grand piano (5’-1"

COMMUNITY SERVICE JOBS

Positions for students with work-study eligibility. Tutors needed for middle school and high school students in all after-school drop-in programs in Dorchester. Math, science, history, language arts, training provided. 8.8 hrs/week between 4:30 p.m. and 8:30 p.m. 617-536-6610.

Boston chapter of Gay, Lesbian, Straight Education Network seeks interns to help with fund raising, programming, publicity or membership. Flexible hours, $15.00/hr. Marcela Arba at 617-536-9669 or marcela@tlsboston.org.

WANTED

Wanted: MIT CRC seeks female volunteers 20-30 lbs. overweight for 14-week weight loss study. Testing another consumption of saturated/nutritive-rich beverage or protein/carbohydrate beverage helps with weight loss. 452-4184 or pidn@mit.edu.

Part-time child care wanted for eight-month-old baby girl. Must have certification/desires in early childhood care, and min. five years infant care experience. Mon. and Thurs., 9-5:30 p.m., starting Sept. 6, boveyan@rcn.com.
School of Engineering still nation’s best, says U.S. News & World Report

MIT’s School of Engineering is the nation’s best undergraduate engineering program overall, and seven MIT specialties were individually ranked best in the 2005 newsstand book, America’s Best Colleges, from U.S. News & World Report.

The guide recognizes each college for a different attribute; MIT was named one of “America’s 25 Hot Schools” in the 2005 Kaplan/Newsweek guide, “How to Get into College.” The guide recognizes each school for a different attribute; MIT was cited for “hottest architecture.”

In campus diversity among undergraduates, where a rating of 0.6 is the highest, MIT’s diversity index held at 0.65, the same as UCLA and St. John’s University in New York. The highest rating was given to Brown University and the University of Houston.

To rank undergraduate business programs, U.S. News surveyed deans and senior faculty at undergradu- ate business programs. Criteria for judging schools in other categories include peer assessment, retention, faculty resources and research, selectivity and class size.

More than 100 of MIT’s suppliers of office, computer, and equipment, furniture, and temporary help will display their products and answer questions at the annual vendor fair, which will be held under the big tent on Memorial Court on Thursday, Sept. 9 from 9 a.m. to 2 p.m.

MIT employees are encouraged to check their directory information, including e-mail address, by going to the Employee Self Service web site at http://web.mit.edu/sapweb. The deadline for changing information for inclusion in the printed Faculty and Student Directory is Sept. 15. The directory will be available by early November. The online directory is available daily.

Emergency rides home

People who commute to their jobs at MIT by train, bus, carpool, vanpool, bike or walking at least three days per week are eligible for a new Emergency Ride Home (ERH) program, a service provided by MIT through its membership in the Charles River Transportation Management Association. ERH ensures that people who use public transportation to commute to work are not stranded at work in cases of personal or family illness or emergencies, or even unscheduled transportation or other alternatives to driving alone is required. To learn more or to register, go to http://www.masscommute.com.

Animal care concerns

Vice President for Research and Associate Provost for the arts, Nancy N. Brown, said the committee was established to ensure that all MIT researchers working with animals comply with federal, state, local and institutional regulations on animal care.

The committee is established to ensure that all MIT researchers working with animals comply with federal, state, local and institutional regulations on animal care. To that end, it inspects animals, animal facilities and labs, and reviews all research and animal care concerns.

If you have information about inadequate animal care or animal treatment that would help this committee fulfill its responsibilities, contact the committee at 253-9436 or call Gast at 253-1403. All concerns about animal care are handled confidentially and will be investigated by the committee.

Paris for IAP?

The Foreign Languages and Literatures section is launching its third January Scholars in France program, open to undergraduate students who participate in a two-week, all expenses paid trip to Paris to participate in the schools’ immersion program for the winter. MIT students will be hosted in dormitory rooms in museums.
PRESIDENT

Continued from Page 1

tiers of innovation and leadership in research and education. She possesses a rare combination of scientific achievement, outstanding managerial talent, and an extremely engaging personal style that will serve MIT’s faculty, students and staff very well.”

Among other priorities, Hockfield says she intends to use her new position to encourage collaborative work among MIT’s outstanding schools, departments, and interdisciplinary laboratories and centers to keep the Institute at the forefront of innovation. She sees MIT’s strength in engineering uniquely positioning the Institute to pioneer newly evolving, interdisciplinary areas and to translate them into practice.

Hockfield also hopes to accelerate the national discussion on improving K-12 science and math education. She believes strongly in the value that international students and scholars bring to the educational and research programs of American universities, and in the importance of American universities’ working closely with leading academic centers around the world, she said.

“Around the world, MIT stands as an emblem of discovery and innovation, produced through the scholarship of its outstanding faculty, students and graduates,” said Hockfield about her election. “From my first conversations in the search process, the Institute’s central themes—the pursuit of truth, integrity and the great meritocracy—have resonated with my own core values. This remarkable community’s curiosity, intellectual commitment and passionate determination to solve problems have brought immeasurable benefit to humanity. It is an enormous honor and a very great privilege to have been selected to join this effort as MIT’s next president.”

In her work as a neuroscientist, Hockfield pioneered the use of monoclonal antibody technology in brain research, leading to her discovery of a protein that regulates changes in neuronal structure as a result of an animal’s experience. More recently she discovered a gene and its family of protein products that play a critical role in the spread of cancer in the brain and may lead to new therapeutic targets for brain cancer.

The Yale years

Hockfield, the William Edward Gilbert Professor of Neurobiology, joined the Yale faculty in 1985. She was promoted to full professor in 1994 and appointed dean of the Graduate School of Arts and Sciences in 1998, then provost in 2002, with oversight of the university’s 12 schools.

As dean of the graduate school, Hockfield had responsibility for 73 doctoral and masters degree programs that enrolled approximately 2,500 students. In addition, she had oversight for faculty appointments and promotions in all of the science and engineering departments and in several social science departments. She played a key role in recruiting exceptional scholars and teachers and in increasing the number of women faculty.

During her tenure as dean, Hockfield effectively and creatively revitalized the administration of the school and addressed longstanding problems in academic, extracurricular and financial support for graduate students. She worked with student, faculty and alumni groups to build a much stronger sense of community and to improve the integration of the graduate school into the rest of the university. The number of applicants doubled to more than 9,000 during her tenure and, through the establishment of an Office for Diversity and Equal Opportunity, the number of students enrolling from underrepresented minority groups increased dramatically.

As provost, Hockfield advanced Yale’s major initiatives in science, medicine and engineering, which include a $500 million investment in new and renovated facilities for the sciences. She encouraged collaborative work throughout the university, bringing the humanities and the arts into new relationships and encouraging interactions between the humanities and the sciences. She has also worked to enhance administrative services for the entire university.

Hockfield received her bachelor’s degree in biology from the University of Rochester in 1973, and earned a Ph.D. in anatomy and neuroscience from George-town University School of Medicine in 1979. She carried out postdoctoral research at the University of California, San Francisco. Prior to joining the Yale faculty, she was a senior staff investigator at the Cold Spring Harbor laboratory, a research and educational institution focusing on cancer, neurobiology, plant genetics, genomics and bioinformatics.

Her husband, Thomas N. Byrne, is Clinical Professor of Neurology, Neurosurgery and Internal Medicine at Yale’s School of Medicine. They have one daughter.

COMMUNITY

Continued from Page 1

incoming president.

“I thought it was interesting from the aspect that it is a new leadership so she’ll, like, be more interested in hearing new things. She’ll be more open to listening to us. She’s, like, our class, she’s our president; she came here with us,” said Jonathan Frazier, a freshman from Louisville, Ky.

“I’m just very excited that it’s a woman president, because MIT has this image of being all about technology and men. I think she’ll do a lot to change that image. Hopefully she’ll hire more women faculty to be role models,” said Jamira Cotton, a freshman from Longview, Texas.

“She’s very nice, too. I talked to her and she said something about us both being freshmen.” said Marika Rochin, a freshman from Half Moon Bay, Calif.

Graduate student, Satwiksai Seshasai, (S.B. 2001, M.Eng.), said, “The community meeting was a great idea to bring the community together, including alumni, and make it clear that there is something that will impact the students as well as the faculty and administration. It’s a great start. When I talked to her afterwards, I told her she should loosen up. Well, not in those words, but I told her she should put on some jeans and walk around the dorms and meet some students.”

Faculty and staff members also enjoyed the reception, taking advantage of the opportunity to meet their incoming boss.

“She’s certainly made an initial impression on me of warmth,” said Ayda Mihemba, associate dean for Counseling and Support Services. “It is wonderful to see a woman in this position. The students seem to love her; she’s already told them what her e-mail address is. As a counseling dean, I think it’s very important to students to know that the senior administration is accessible.”

“Seems equally comfortable with students and Cor-

Dana Mead, chair of the MIT Corporation (left), introduced Susan Hockfield as MIT’s 16th president at a press conference in the Faculty Club on Aug. 26.

in recruiting exceptional scholars and teachers and in increasing the number of women faculty.

During her tenure as dean, Hockfield effectively and creatively revitalized the administration of the school and addressed longstanding problems in academic, extracurricular and financial support for graduate students. She worked with student, faculty and alumni groups to build a much stronger sense of community and to improve the integration of the graduate school into the rest of the university. The number of applicants doubled to more than 9,000 during her tenure and, through the establishment of an Office for Diversity and Equal Opportunity, the number of students enrolling from underrepresented minority groups increased dramatically.

As provost, Hockfield advanced Yale’s major initiatives in science, medicine and engineering, which include a $500 million investment in new and renovated facilities for the sciences. She encouraged collaborative work throughout the university, bringing the humanities and the arts into new relationships and encouraging interactions between the humanities and the sciences. She has also worked to enhance administrative services for the entire university.

Hockfield received her bachelor’s degree in biology from the University of Rochester in 1973, and earned a Ph.D. in anatomy and neuroscience from Georgetown University School of Medicine in 1979. She carried out postdoctoral research at the University of California, San Francisco. Prior to joining the Yale faculty, she was a senior staff investigator at the Cold Spring Harbor laboratory, a research and educational institution focusing on cancer, neurobiology, plant genetics, genomics and bioinformatics.

Her husband, Thomas N. Byrne, is Clinical Professor of Neurology, Neurosurgery and Internal Medicine at Yale’s School of Medicine. They have one daughter.

in recruiting exceptional scholars and teachers and in increasing the number of women faculty.

During her tenure as dean, Hockfield effectively and creatively revitalized the administration of the school and addressed longstanding problems in academic, extracurricular and financial support for graduate students. She worked with student, faculty and alumni groups to build a much stronger sense of community and to improve the integration of the graduate school into the rest of the university. The number of applicants doubled to more than 9,000 during her tenure and, through the establishment of an Office for Diversity and Equal Opportunity, the number of students enrolling from underrepresented minority groups increased dramatically.

As provost, Hockfield advanced Yale’s major initiatives in science, medicine and engineering, which include a $500 million investment in new and renovated facilities for the sciences. She encouraged collaborative work throughout the university, bringing the humanities and the arts into new relationships and encouraging interactions between the humanities and the sciences. She has also worked to enhance administrative services for the entire university.

Hockfield received her bachelor’s degree in biology from the University of Rochester in 1973, and earned a Ph.D. in anatomy and neuroscience from Georgetown University School of Medicine in 1979. She carried out postdoctoral research at the University of California, San Francisco. Prior to joining the Yale faculty, she was a senior staff investigator at the Cold Spring Harbor laboratory, a research and educational institution focusing on cancer, neurobiology, plant genetics, genomics and bioinformatics.

Her husband, Thomas N. Byrne, is Clinical Professor of Neurology, Neurosurgery and Internal Medicine at Yale’s School of Medicine. They have one daughter.

in recruiting exceptional scholars and teachers and in increasing the number of women faculty.

During her tenure as dean, Hockfield effectively and creatively revitalized the administration of the school and addressed longstanding problems in academic, extracurricular and financial support for graduate students. She worked with student, faculty and alumni groups to build a much stronger sense of community and to improve the integration of the graduate school into the rest of the university. The number of applicants doubled to more than 9,000 during her tenure and, through the establishment of an Office for Diversity and Equal Opportunity, the number of students enrolling from underrepresented minority groups increased dramatically.

As provost, Hockfield advanced Yale’s major initiatives in science, medicine and engineering, which include a $500 million investment in new and renovated facilities for the sciences. She encouraged collaborative work throughout the university, bringing the humanities and the arts into new relationships and encouraging interactions between the humanities and the sciences. She has also worked to enhance administrative services for the entire university.

Hockfield received her bachelor’s degree in biology from the University of Rochester in 1973, and earned a Ph.D. in anatomy and neuroscience from Georgetown University School of Medicine in 1979. She carried out postdoctoral research at the University of California, San Francisco. Prior to joining the Yale faculty, she was a senior staff investigator at the Cold Spring Harbor laboratory, a research and educational institution focusing on cancer, neurobiology, plant genetics, genomics and bioinformatics.

Her husband, Thomas N. Byrne, is Clinical Professor of Neurology, Neurosurgery and Internal Medicine at Yale’s School of Medicine. They have one daughter.

in recruiting exceptional scholars and teachers and in increasing the number of women faculty.

During her tenure as dean, Hockfield effectively and creatively revitalized the administration of the school and addressed longstanding problems in academic, extracurricular and financial support for graduate students. She worked with student, faculty and alumni groups to build a much stronger sense of community and to improve the integration of the graduate school into the rest of the university. The number of applicants doubled to more than 9,000 during her tenure and, through the establishment of an Office for Diversity and Equal Opportunity, the number of students enrolling from underrepresented minority groups increased dramatically.

As provost, Hockfield advanced Yale’s major initiatives in science, medicine and engineering, which include a $500 million investment in new and renovated facilities for the sciences. She encouraged collaborative work throughout the university, bringing the humanities and the arts into new relationships and encouraging interactions between the humanities and the sciences. She has also worked to enhance administrative services for the entire university.

Hockfield received her bachelor’s degree in biology from the University of Rochester in 1973, and earned a Ph.D. in anatomy and neuroscience from Georgetown University School of Medicine in 1979. She carried out postdoctoral research at the University of California, San Francisco. Prior to joining the Yale faculty, she was a senior staff investigator at the Cold Spring Harbor laboratory, a research and educational institution focusing on cancer, neurobiology, plant genetics, genomics and bioinformatics.

Her husband, Thomas N. Byrne, is Clinical Professor of Neurology, Neurosurgery and Internal Medicine at Yale’s School of Medicine. They have one daughter.