MIT launches effort to understand autism

Deborah Halber
News Office Correspondent

MIT brain researchers are undertaking an ambitious, multifaceted approach to understanding the genetic, molecular and behavioral aspects of autism, with the help of a $7.5 million grant from the New York–based Simons Foundation. The MIT-Harvard Center of Cancer Nanotechnology Excellence (CCNE) will be directed by two-thirds of the cancer problem. Nanotechnology, brain development, neuronal plasticity, genetics, brain function — social, strengths to be brought to bear on a single program director Mriganka Sur, head of the Department of Brain and Cognitive Sciences at MIT and Sherman Fairchild Professor of Neuroscience. “Because autism’s symptoms involve many different dimensions of brain function — social, cognitive, visual, motor, language — a full understanding involves an analysis of the range of dysfunctions and their probable causes.”

“The projects funded by the Simons Foundation grant involve MIT researchers who are expert in diverse areas, including human brain imaging, visual psychophysics, brain development, neuronal plasticity, cortical physiology and mouse genetics. This is a novel and unique combination of strengths to be brought to bear on a single problem.”

MIT mathematicians take a giant step forward in understanding the tiny leaps of water bugs. Deborah Halber, a junior in architecture, puts the finishing touches on the canopy of her team’s portable homeless shelter. Working in teams of four or five, students had five days to design and build the individual shelters for Professor Jan Wampler’s architecture class. Story, additional photos on Page 4.

Be prepared

At a hurricane symposium, MIT experts weigh in on how to improve disaster response.

IT’S A BUG’S LIFE

MIT mathematicians take a giant step forward in understanding the tiny leaps of water bugs.

Deborah Halber

A can-do attitude

PHOTO / DONNA COVENEY

MIT's African drumming ensemble Rambax reports on its summer study tour to Senegal.

The catastrophic potential of an avian flu pandemic ranks just below that for thermonuclear war, and our global lack of preparedness for just one wave of this fierce virus promises death to millions, a Pulitzer Prize-winning author warned at a talk held on Monday, Sept. 26, at 3 p.m. at the Dibner Institute. Laurie Garrett, senior fellow for global health at the Council on Foreign Relations, delivered her talk, “The Scientific, Health and Political Implications of an Avian Flu Pandemic,” to a rapt audience.

A former science reporter for National Public Radio and for New York Newsday, Garrett won the Pulitzer Prize and the Polk and Peabody awards for her writing on global health systems and infectious diseases. She is the author of The Coming Plague: Newly Emerging Diseases in a World Out of Balance” and “Betrayal of Trust: The Collapse of Global Public Health.”

Garrett described the avian flu virus, known to scientists as H5N1, in all its pernicious power. She traced its roots to Guandong, China, “cradle of Asia” and birthplace of SARS, where live animal markets and human and animal migration confound surveillance, record-keeping and disease containment.

H5N1 originated in migrating aquatic birds and is now spreading to urban poultry, where large numbers of birds are kept. One of the large projects, led by Langer and named after a former postdoctoral fellow Omid Farokhzad, now a Harvard Medical School professor, focuses on using nanoparticles to deliver surgery, indirect to prostate cancer cells. “One of the problems with cancer therapy is that it goes everywhere in the body,” often caus-
Faculty ship books to Baghdad

Scott Campbell
School of Architecture and Planning

The faculty of MIT’s Department of Urban Studies and Planning recently shipped 200 pounds of books to the Institute of Urban and Regional Planning at the University of Baghdad. The effort was in support of its newest initiative to help replenish its devastated library.

Roughly 200 books and journals were selected from the urban planning, environmental protection, infrastructure, architecture, and landscape architecture and geography. Some books were even historical urban planning books focused on the infrastructure of Middle Eastern cities, including Baghdad and other historically significant areas of Iraq that have been destroyed by the war.

The gift came about because an MIT visit last spring by Abdelwahab Ahmed, head of the environmental planning department at the University of Baghdad, Ahmed hadn’t been out of Iraq for 17 years, since the rise of Saddam Hussein, nor had he had contact in all that time with the wider planning community. Faced now with the challenge, along with his colleagues, of rebuilding Baghdad, he spent a semester here taking full advantage of the opportunities MIT afforded.

When he went home at the end of the term, faculty members combed through their private libraries to put together a gift to send after them. They collected nearly twice as many books as they shipped; because Iraq is a war zone only Priority Mail is delivered, and for a shipment of 300 pounds that amounted to a significant cost. The remaining books will be shipped when mailing restrictions are lifted.

Initiated by Larry Suskind, Ford Professor of Urban and Environmental Planning—who also helped arrange Ahmed’s visit—the gift was one of many such shipments from around the world, as university colleagues try to help rebuild Iraq’s libraries. There are 22 universitites and 42 technical colleges in Iraq, all of which have faced decline over the last 20 years. And in the looting and fires that occurred during and after the fall of Hussein, many have classrooms, libraries, buildings and laboratories burned, which furniture, fans, windows, doors—everything of value—were taken or destroyed.

President Susan Hockfield will take place in Academy of Arts, Sciences

President Susan Hockfield will be inducted into the American Academy of Arts and Sciences on Wednesday, Oct. 7, at the academy’s headquarters in Cambridge, Mass. Fellows are selected through a highly competitive process that recognizes individuals who have made pre-eminent contributions to their disciplines and to society at large. They are nominated and elected to the academy by current members.

Hockfield is a member of the 2004 class of fellows, but was unable to attend last year’s induction ceremony, so she will be formally inducted with the 2005 class.

MIT fellows in the 2005 class are Professor Edward DeLong of civil and environmental engineering; Professor John Guttag of electrical engineering and computer science; Professor Daniel Nocera of chemistry, who is also the W. M. Keck Professor of Energy; Harriet Ritvo, the Arthur J. Conner Professor of History and Writing; and Richard Samuels, the Ford Foundation International Professor of Political Science.

Speaker proposals sought

The Commencement Committee invites suggestions for the guest speaker at MIT’s Commencement exercises on June 8, from all members of the community. The Committee hopes to have a choice of one to four speakers who can be chosen to address the 2006 graduating class.

Suggestions may be submitted to Kimberley Wu, president of the Class of 2006, at kimberley@mit.edu. Emilie Shiba, president of the Graduate Student Council (slubya@mit.edu); Gayle Gallagher, executive officer of the Undergraduate Commencement (gayle@mit.edu); and Eric Grimson, chairman of the Commencement Committee (wegl@mit.edu) will select the Commencement speakers. Suggestions must be received by Friday, Oct. 7.

Following a review, the committee will submit a list of names to the Commencement Committee for consideration. The list will not be made public. The president has the responsibility and authority for selecting and inviting a guest speaker for the Commencement exercises.

$100 laptop idea taking off

Anne Trafton

An MIT professor’s plan to offer $100, hand-cranked laptop computers to children in developing countries has drawn interest from several foreign leaders as well as Massachusetts Gov. Mitt Romney, who plans to distribute them to schoolchildren.

Nicholas Negroponte, co-founder and chairman of the Media Lab, said people working on the laptop idea since 1999 and plans to have a working prototype available in November. He demonstrated a model last week at the Technology Review Magazine Emerging Technologies Conference at MIT.

In January, Negroponte and his Media Lab colleagues Joe Jacobson and Seymour Papert announced the foundation of One Laptop Per Child, a nonprofit dedicated to designing and distributing the computers. According to the program leaders in Thailand, Brazil and Egypt have already expressed interest in the computers, which can be powered by electrical outlets or by hand crank.

“Laptops are a window into the world and a tool with which to think. They are a wonderful way for all children to ‘learn learning’ through independent interaction and exploration,” Negroponte wrote on the web site.

Much of the cost savings comes from lowering the cost of the display down to about $30. The designers are also streamlining the computer’s software. But the Linux-based, full-color, full-screen laptops can do anything a regular laptop can do except store huge amounts of data, according to Negroponte.

The computers will also have wireless Internet access, but only if they are within range of an Internet base station.

Although the program is targeted to children in the developing world—children, for instance, the British government claims Massachusetts children could also benefit. Two weeks ago, he announced a plan to spend $54 million to roll out the program over two years, starting in fall 2007.

Several companies are helping to develop the laptop, including AMD, Brightstar, Google, News Corp and Red Hat, the web site said. The laptops will not be available for the general public to purchase. For more information about the project, visit laptop.media.mit.edu.

Grad life grants

The Graduates Student Office is seeking proposals for Graduate Student Life Grants. Grants will be awarded for creative ideas that benefit the graduate student experience. The deadline for proposals is Oct. 14. For more information, visit web.mit.edu/gso/community/grants.html.

Housing relocates

The housing office is moving from its present location in E32 to E19-429 on Oct. 4. E32 is being completely vacated over the summer and is scheduled to be demolished. It covers many areas, including undergraduate, conference and guest housing, graduate and family housing, off-campus housing and renovations for residential facilities.

To accommodate the move, the housing office will be closed on Thursday, Oct. 6, and Friday, Oct. 7, but staffers will check voicemail during that time. If anyone has an emergency requiring immediate attention, that appropriate housing employee will be located.

For more information, please contact Linda Patton in E17-4240 at x7-3719.

Draper Tech Expo

MIT faculty and students are invited to visit Draper Lab’s Technology Exposition to see Draper projects and technologies and discuss them with the public. The event will be open to students and faculty on Tuesday, Oct. 2 from 11 a.m. to 4 p.m. and Thursday, Oct. 4 from 9 a.m. to 1 p.m.

Exhibit topics will include space systems, robotics and engineering and a variety of independent research and development projects.

Visitors must present photo identification. For more information, contact the Communications Office at x2-2600.

IAP 2006

Members of the MIT community planning to offer activities and credit subjects during the 2006 Independent Activities Period (IAP) may register their activities online. Listings will appear in the online IAP Guide at web.mit.edu/iap. Organizers are required to submit a title and subject descriptions by the first week of November. To book a space on campus, contact the News Office at x7-3688 or iap-web.mit.edu/iap. An MIT personal certificate is required. Questions about IAP should be directed to the Academic Resource Center at x3-1668 or iap-www@mit.edu.

MIT Excellence Awards

Team and individual nominations for the fifth annual MIT Excellence Awards are being accepted at http://awardsweb.mit.edu/rewards/excellence/. These awards honor the most creative contributions by support, service, sponsored research, administrative and other academic staff. Brown bag luncheon discussions are being offered for those who have questions about the nomination process or who would like to help with the nomination form. RSVP to rewards@mit.edu for any of the following sessions: Oct. 4 from noon to 1 p.m. in S2-380 (Lincoln Lab); Oct. 12 from 12:30 to 1:30 p.m. in 16-151; Oct. 17 from noon to 1:30 p.m. in 14N-112 (this session takes place in a computer lab. Participants will be able to work on their nominations during the workshop). Nominations are due Oct. 19. For more information, contact Pamela Culver, at x3-5986 or rewards@mit.edu.

No Tech talk next week

There will be no Tech Talk on Oct. 12 because of the Columbus Day holiday. The next paper will appear Oct. 19.

The News Office is distributed free to faculty and staff offices and residence halls. It is also available online, available online at newsoffice@mit.edu. The News Office is in Room 11-400, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

Printed on recycled paper
news -

The federal disaster response following Hurricane Katrina, heavily criticized in the media, was not all terrible, said Professor Kenneth Oye of political science and engineering systems at a panel discussion in Kirsch Auditorium on Sept. 30.

The discussion on “How Can We Improve Disaster Response?” was the first event in a four-part series of symposia exploring “Big Questions After Big Hurricanes,” sponsored by the Katrina Response Advisory Committee, Aeronautics and Astronautics Professor and Director of the Engineering Systems Division Daniel Hastings moderated the panel.

“Federal response to Katrina varied markedly,” said Oye, who focused first on the good work of both the Coast Guard and the National Weather Service.

Because of the weather service prediction officials were informed well in advance, said Oye. Coast Guard members heeded the call and took the warning seriously, ensuring their families and assets from the region so that they could focus on their jobs.

Not only was the response from the Federal Emergency Management Association (FEMA), which was crippled well before Katrina, said Oye. “Katrina was a research project,” he said. “The deficiencies and weaknesses (in FEMA) became apparent to all.”

“Is there enough noise to go around,” said Professor Richard Larson of civil and environmental engineering, who is also director of the Center for Engineering Systems Fundamentals.

Larson pointed out the generosity of ordinary citizens who allowed victims into their homes and donated food, clothing and money to relief organizations as well as the “many stories of emergency responders who risked their lives.”

He said fundamental lessons culled from individual disasters can help planners prepare for the future.

Using a multitude of examples from the Oklahoma City bombing in 1995 to the United Airlines Flight 232 crash in Sioux City, Iowa, in 1989 — a response he graded with an “A plus” — Larson iterated a strong emergency response system.

“Essential component in getting the injured and the healthy to safety is triage,” he said.

After a disaster, inventory management becomes important so relief can be quickly and appropriately distributed. It is an essential component in getting the injured and the healthy to safety is triage, he said.
Workshop offers guidance to help future female academics succeed

Deborah Halber
News Office Correspondent

Biological engineering graduate student Bree Aldridge attended the Forward to Professorship workshop to help her choose among roles in industry and one in academia. She was quickly surprised by what she learned. “I didn’t even know there was a service component,” she said of the requirement that this year, researchers take up to 20 percent of their time to serve on Institutional Review Boards.

Aldridge was one of 45 graduate students, postdocs and junior faculty who participated in the free workshop held Sept. 30 and Oct. 1 in the MIT Faculty Club. The workshop was sponsored by MIT’s Graduate Student Office (GSO) to help young women negotiate the tricky path from graduate study to an academic career.

“The forward” to the Forward to Professorship workshop is called “Seeds of Success: Conversations on Reaching Women in Academics, Research and Development in science, engineering and mathematics. The workshop is the brainchild of several Washington, D.C.-based women faculty members, including George Washington University Professor Catherine Mavrilis, who received a Ph.D. in astro/aeo from MIT in 1989. Mavrilis saw the need to provide women with skills, strategies and ‘insider information’ to get and succeed in a tenure-track position. ‘There was nothing like this when I was at MIT,’ she said.

The National Science Foundation funded the workshop; the workshop expanded and became available beyond Washington. GSO Director Isaac M. Colbert sought out the workshop for MIT, because, he said, “Young people need to know that and counsel and get how to be successful.” He said the response has been “tremendous.”

Keynote speaker Maria Klawe, professor of engineering and applied science at Princeton University, said that the young women she encountered at the Forward workshops were bright and ambitious, but she hopes to lend words of encouragement on “how to succeed when the cultural message they are receiving is, ‘You don’t belong here’ in male-dominated professions.”

Workshop presenter Charlene Sorensen, who teaches chemistry at Galaudet University, told participants they need a plan if they want to squeeze family life, friends, spiritual associations, fitness and fun into a profession that can leave no time for such luxuries.

“When you look at all the things you need to do for an academic career, it may add up to more than 40 hours or even more than 60 hours a week,” Sorensen said. “You need a plan for balancing career and life so you don’t get caught up in day-to-day minutiae and don’t meet your long-term goals.”

Participants attended sessions on planning and funding research; negotiation strategies; and creating strategies for balancing family and career, including how to deal with “negatives” such as having a baby and how to say no “firmly but nicely” to yet another committee.

CANCER

Continued from Page 1

ing toxic side effects, Langer said. “We proposed making nanoparticles with units attached to them — homing devices, if you will — that would target only cancer cells.”

The first challenge of this project is to isolate these “homing devices,” molecular devices called aptamers, that bind specifically to prostate-tumor antigens and will be taken up by the cancer cells. The second challenge is to construct a safe, biodegradable nanoparticle that can carry a drug on the inside and bind with an aptamer on the outside.

Another project, led by Sharp, takes a biological approach to the treatment of cancer. In this effort, researchers will use nanomaterials to deliver short interfering RNAs (siRNAs) to cancer-causing genes associated with lethal cancers, like glioblastoma, with ineffective treatment options. siRNAs are tiny sequences of RNA that, when introduced into a cell, will turn off the gene from which they originated, thereby silencing the expression of the gene.

Though potentially powerful tools in the anti-cancer arsenal, siRNAs are difficult to deliver in tumor cells; hence, this project explores two complementary approaches. One is to attach siRNAs and peptides (fragments of proteins) to the surface of nanoparticles. The intention is that the peptides, like heat-seeking missiles, will zero in on tumor cells, binding with them and dumping the nanoparticle’s payload of siRNAs, thereby leaving the nanoparticle intact and allowing it to be taken up by cancer cells.

A second approach is to incorporate them directly into the genome of a viable nanoparticle that can carry a drug on the inside.

“SiRNA technology is very new and this is an exciting field,” said Sharp. “There’s a lot of work in the lab and how we can push the technology of delivery, then we can probably treat many different forms of cancer much more effectively.”

How these and other projects will turn out is anyone’s guess. But, as Jacks concludes, “The best way MIT can deploy its talent is to put together people like Bob Langer and Phil Sharp on the same problem.”

AWARDS & HONORS

Two MIT professors have been selected as Office of Naval Research Young Investigators. Kristi L. Jones-Prather, associate professor of chemical engineering, and Cynthia L. Breazeal, associate professor in the Laboratory for Computer Science and the Media Laboratory, were two of 28 scientists chosen by the ONR in June. The program is designed to attract young scientists who show exceptional promise for outstanding research and teaching careers.

Latina students and alumnae lift voices in film

“Nuestras Voces: Being Latina at MIT,” a documentary produced by Latina MIT students, was chosen as one of the ten finalists for the 2005 New England Film and Video Festival. The prestigious annual festival, now in its 30th year, in which it is also to be screened. The film, “Nuestras Voces” premiered at MIT in March, and screened at the Coolidge Corner Theatre in Brookline on Friday, Oct. 7 at 7 p.m.

The MIT group hoped “Nuestras” would reach both the students and a younger Latina community, including women in high school or junior high, for whom these stories “could be a source of inspiration. Also, a documentary about Latina students can educate a mass audience about the challenges that surface as minority individuals become members of institutions like MIT or Cambridge,” Sorensen said.

The Latinas in “Nuestras” are Jaslyn Carvajal ’04, Kateri Garcia ’03, Maribel Gomez ’02, Daile Jimenez ’01, Nelly Rosario ’00, Karina Vilma ’01 and Nicole Vilato ’02.

For Jimenez, participating in “Nuestras Voces” was a “fantastic experience.” She said, “Not only did I get to tell my story and process it at the same time, I also got to hear stories of other MIT women.”

Jimenez currently works as director of special projects at the Department of Defense in Cambridge. In her view, “Nuestras Voces” fills the need for a film that speaks to non-Latino women, that speaks to immigrants or children of immigrants. Its biggest asset is that it speaks to “a large audience,” she said.

As “Nuestras” opens, it introduces the Latina students, their familial and community relationships, and the response they received from their parents, high school teachers and counselors when they expressed interest in going away to college.

The middle section depicts the women’s lives at MIT and in the fall of seven students reflect on how they changed during their time at the Institute.

It’s a simple video, yet its candor cuts right to the heart of many young women’s experience. Jimenez said, “I’ve seen women cry when they see it and others be visibly moved. The film is powerful because it delves into the lives of these seven women, and at the same time it speaks to much larger than them and their particular circumstances. I think it’s definitely helped others, in particular younger women, truly understand that there have been other Latinas before them who have had very similar experiences. That is comforting, it validates your experience,” Jimenez said.

Adriana Gutierrez co-directed “Nuestras Voces” with Jimenez. The film, produced by the Center for Bilingual/Bicultural Studies, was included in the 2005 New England Film and Literary awards.

“I’ve seen women cry when they see it and others be visibly moved. The film is powerful because it delves into the lives of these seven women, and at the same time it speaks to much larger than them and their particular circumstances. I think it’s definitely helped others, in particular younger women, truly understand that there have been other Latinas before them who have had very similar experiences. That is comforting, it validates your experience,” Jimenez said.
MIT mathematicians have discovered how certain insects can climb what to them are steep, slippery slopes in the water's surface without moving their limbs — and do it at high speed.

Welcome to the world of the tiny creatures that live on the surface of ponds, lakes and other standing bodies of water. There, "all the rules change," said David Hu, a graduate student in the Department of Mathematics and first author of a paper on the work to appear in the Sept. 29 issue of Nature.

For the last four years, Hu and John Bush, an associate professor in the department, have been studying the novel strategies these insects use to navigate their environment. To do so, they took high-speed video of the creatures using a camera provided by MIT's Edgerton Center, then digitized and analyzed the images.

In 2003, the two and Brian Chan, a graduate student in the Department of Mechanical Engineering, reported in Nature how some of these creatures walk on water. Both that paper and the current one were Nature cover stories.

Now Bush and Hu are describing how three species of insects are able to climb the slippery slopes, or menisci, that arise when the water surface meets land, floating bodies of water and emergent vegetation.

Why would they want to leave the water? "There are many reasons, such as laying eggs or escaping predators," said Hu. "Insects are attracted to other menisci, the cumulative effect is to pull the insect up and over the meniscus at the water's edge.

Remember the champagne bubbles? Each essentially forms its own meniscus, bending the light of the glass.

The larva of the waterlily leaf beetle solves the same problem a different way. The sluglike creature simply arches its back, creating menisci at each end. The effect is the same end result, propelling the larva up the slope.

Bush and Hu got involved in this work because they wanted to explain how these creatures do what they do. Bush notes, however, that "the physics is also of interest to people working in nanotechnology because they, too, are concerned with problems at very small length scales.

Hu will be defending his thesis on Sept. 28. This work was sponsored by the National Science Foundation.
Professor Emeritus Donald Harleman dies at 82

Sarah H. Wright News Office

Donald R. F. Harleman, a renowned civil engineer whose love for the ocean and expertise in water quality and waste treatment benefited urban harbors throughout the world, died of cancer on Sept. 28 in Nantucket, Mass. He was 82.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Michael Wilson of Everett and David S. Wilson of Woburn; a son, Robert T. Harleman of Champaign, Ill., and Anne Harleman Krieger of New Canaan, Conn.; and six grandchildren.

62 Donald Harleman

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.

Harleman advocated strongly for implementing CEPT technology as part of the Boston Harbor cleanup. Although it was not adopted in Boston, CEPT became the wastewater treatment technology of choice in a number of developing countries, thanks to his efforts.

Harleman was a native of Palmerton, Pa., a longtime resident of Nantucket and a grandson of Mahlon and Harriet Bowles Harleman Krieger of New Canaan, Conn.; and three grandchildren. Wilson, an MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Murphy award in 1994. Frederick D. Wilson, of Everett, a retired MIT employee of 43 years and Air Force veteran, died on October 5, 2005, in Cambridge.

Harleman was an engineer, scientist and educator, recognized nationally and internationally, whose research and innovations were directed toward improving water quality and making wastewater treatment available and affordable to all.

He was a global leader in advancing the scientific understanding of estuarine and shore zone processes. His development of hydrodynamically enhanced primary treatment (CEPT) as an alternative to expensive biological systems commonly used in the United States.
For 11 members of MIT’s African drumming ensemble, “Rambax,” the West African nation of Senegal was more than a vacation destination. This past spring, the MIT student musicians spent three weeks playing, studying and absorbing Senegalese culture during the group’s first summer tour.

On Sept. 14, Rambax co-founder and director Patricia Tang and some of the group members spoke about their extraordinary trip during the first Arts Colloquium of the semester. The presentation, attended by faculty, students, members of the Council for the Arts and Council Scholars in the Arts, was hosted by Associate Provost for the Arts Alan Brody.

Tang organized and led the trip to give the group a chance to study and perform the traditional and sub-Saharan drumming with its cultural context — among and for the Wolof people of Senegal.

Tang wanted to arrive there with this idea that we would show the Senegalese how to play their own music, said Tang, associate professor in the Music and Theater Arts Section and a specialist in Senegalese music. “We wanted to show them that we cared so much for Senegalese culture, that we wanted to learn their art.”

Students lived and practiced with the family of Lamine Touré, co-founder of Wolof people of Senegal.

Sahar drummers use one hand and one stick to create a dance rhythm or a “bakk,” a musical phrase that is composed by musicians, “goats,” and is passed down through generations. “Malaxa” is the basic accompaniment beat played on the smallest drum, and “tulli” and “talimbat” are the two bass drums. Together they create the basic beat by which the lead drummer carries the main beat.

This is the creation process and the resulting sound is a chaotic, frenzied beat that starts at your foot and works its way up to your bobbing head until you cannot help but dance. It is beautiful and wild and harmonious at the same time.

The students not only strengthened their drumming abilities, but also held a position on their annual tour with students from Université Cheikh Anta Diop in Senegal. Students from both continents shared ideas and scientific, mathematical and musical projects.

Students also performed. One night they set up two street festivals, one for children and one for adults. The next night they performed at the Soirée Senégalese, a nightclub that features pop music along with traditional drumming.

“We got a great reception from the people there,” said Sasha Devore, a graduate student at the Whitaker College of Health Sciences and Technology, who has been drumming for four years. “It was absolutely amazing. We did so much and everyone was so excited to show us their culture and their way of drumming and to learn our way and to really share in the experience. I would definitely go back.”

Rambax was created in 2001 after Tang had spent several years studying Senegalese music. She lived in Dakar, Senegal, from 1997 to 1998, and the experience was unforgettable, she said. She felt her students needed context to fully understand the art of sahar drumming.

“We used to say, ‘wouldn’t it be fun to go to Senegal,’” said Tang. “But within the last year, we realized that we had several of our students graduating, and that it was now or never. Students even went so far as to buy their plane tickets before we had received funding from the school for the trip.”

Prior to traveling, Tang put her students through a cultural orientation. Students were taught the importance of eating with their right hands and sharing a communal food bowl as they do in Senegal. Although there were many health and cultural concerns, the students were more than prepared upon arrival and even learned enough of the Wolof language to offer thanks and compliments to their hosts and townsmen.

“We showed the people of Senegal how culturally diverse our MIT group was,” said Tang. “We have students from Brazilian, Vietnamese, Hispanic backgrounds...all different nationalities who come together for the love of drumming.”

At the presentation, Tang showed video of Rambax’s performances in Senegal. In each video, the drummers smiled with elation as they felt the rush of what Devore called, “losing themselves inside the music while remaining focused on your surroundings.”

“Our drumming has changed since we came back,” said Devore. “We learned the cultural rhythm. We have context now. When we play, we can feel the ocean; we can smell the sand and feel the dust. We drummed ourselves to exhaustion and simply lost ourselves in the music. Our drumming has definitely changed since our trip.”

The tour was funded in part by the Council for the Arts at MIT, the offices of the Chancellor, Dean for Undergraduate Education and Dean for Graduate Students, and the Music and Theater Arts Section.

For more information on Rambax, visit their web site at web.mit.edu/Rambax.
Chamber concert
The Lexington Symphonietta Chamber Players — left to right, Barbara Poeschl-Edrich, William Kirkley, Danielle Boudrot, Bradley Ottesen, Elizabeth Whitfield, Barbara Oren and Paul Glenn — will perform at the MIT Chapel at noon on Thursday, Oct. 6.