MIT is No. 1 in U.S. News ranking

MIT has once again earned top honors in U.S. News & World Report’s annual ranking of American graduate school programs, with the School of Engineering, the Department of Economics and more than a dozen MIT departments or programs ranked No. 1 nationwide. U.S. News & World Report magazine has published its well-regarded graduate school rankings for 17 years. The 2006 edition of its book, “America’s Best Graduate Schools,” hit the newsstands April 1.

MIT’s School of Engineering was ranked No. 1 among U.S. graduate engineering schools, with Stanford University, the University of California at Berkeley and Georgia Institute of Technology taking 2nd, 3rd and 4th place, respectively. MIT also placed first in seven of 12 engineering specialties—aeronautics and astronautics, chemical, computer, electrical, materials, mechanical and nuclear engineering—6th in civil engineering and 7th in biomedical engineering. The magazine’s criteria for determining overall engineering rankings include peer assessment, recruiter assessment, research activity, student selectivity and doctoral student-to-faculty ratio. MIT scored 100—the top—overall.

MIT’s Economics Department was ranked No. 1 overall among doctoral programs in economics. The Institute’s programs in economics, macroeconomics and public finance also took No. 1 rankings, with programs in development economics, international organization, international economics and labor economics all ranking among the top five.

MIT’s Political Science Department was ranked 10th in the nation, along with Columbia University and UCLA. The Institute’s Psychology Department ranked 12th, along with Stanford University and the University of Texas-Austin. The Institute’s programs in behavioral neuroscience and cognitive psychology ranked fourth and sixth, respectively.

Department chairs and senior faculty ranked doctoral programs in social science and humanities based on academic excellence. MIT’s Sloan School of Management tied for fourth place overall with Northwestern’s Kellogg School of Management. Business school deans and MBA program directors ranked business specialty programs on academic quality and placement success, among other categories. MIT’s Sloan School’s programs in information systems, production/operations and supply chain/logistics were ranked No. 1.

The magazine’s ranking of American undergraduate programs appears in August.

Buddhist message written in sand

Denise Brehm
News Office

Painstakingly created grain by grain, the 4-foot Varvatta Sand Mandala was completed yesterday at Simmons Hall in a Buddhist ritual intended to form a physical expression of insight, awareness and altruism.

MIT’s Buddhist chaplain, Tenzin (Tibetan for “Holder of Dharma”) L.S. Priyadarshi, worked with Lama Dhondup Tsering, a Buddhist monk trained at the Gyuto Tantric College in India, to create the mandala, which they started on Saturday, April 2.

Buddhists use the visual and aural to try to condition the mind, to become aware of thoughts (“Is any one moment, we have 3,000 thoughts in our mind?” Priyadarshi said), to filter them down, and finally to manifest the good thoughts in speech or action.

The image at Simmons Hall focuses on the cosmic Buddha of insight and purification, according to Priyadarshi, who created the mandala at Simmons Hall. It will be on view through Saturday.

‘Clocky’ earns grad student 15 yrs. of fame

Sasha Brown
News Office

A relatively simple product designed to combat a common problem is turning Media Arts and Science graduate student Gauri Nanda into a celebrity.

Working to solve the main cause of oversleeping—the snooze bar—Nanda has designed an early morning hide-and-seek process that could revolutionize the morning for many oversleepers.

Clocky—a shag-carpeting-covered digital clock on two wheels—jumps from the bedside table to find a hiding spot each time the snooze bar is pressed. A few minutes later, when the alarm sounds for a second time, the sleeper must first find the clock before he or she can press snooze again. Its designed to force people up and out of bed, making them less likely to keep hitting the snooze bar.

Nanda created Clocky last semester. The man who keeps the hit TV show “NUMB3RS” mathematically honest is also using a purifying math theory to correct a flaw in standard counterterrorism thinking. A recent MIT professor of mathematics at MIT and a Hollywood math consultant, Dr. Jonathan D. Farley realized that experts could make potentially grave errors by overestimating their effectiveness at breaking up terrorist cells. “They’re asking the wrong question and getting the wrong answer,” Farley explains.

It’s an easy mistake to make, since most government operators don’t use lattice theory to analyze social networks. Lattice theory, which includes Boolean algebra, is Farley’s favorite conceptual realm, and his talent at it has earned him great acclaim.

“He used to joke that it has no practical purpose whatsoever, but after the Sept. 11 terrorist attacks, Farley wondered if pure mathematics actually could help.” He remem-bered the opening line in the movie “A Beautiful Mind” about John Nash: “Math-e-maticians won the war.” And, he remem-bered Palestinian leader George Habash’s words: “Terrorism is a thinking man’s game.”

Being a thinking man, Farley says, “it’s better to fight smarter, not harder,” and fighting Al Qaeda with abstract theory could more accurately assess our vulner-ability to future attacks than current methods. As a bonus, it could also prevent financial resources from being wasted on phantom fears at the expense of real dan-gers. “People often view terrorist cells as a

Math whiz fights terror with smarts

Cathryn M. Delude Special to MIT Tech Talk

The man who keeps the hit TV show “NUMB3RS” mathematically honest is also using a purifying math theory to correct a flaw in standard counterterrorism thinking. A recent MIT professor of mathematics at MIT and a Hollywood math consultant, Dr. Jonathan D. Farley realized that experts could make potentially grave errors by overestimating their effectiveness at breaking up terrorist cells. “They’re asking the wrong question and getting the wrong answer,” Farley explains.

It’s an easy mistake to make, since most government operators don’t use lattice theory to analyze social networks. Lattice theory, which includes Boolean algebra, is Farley’s favorite conceptual realm, and his talent at it has earned him great acclaim.

“He used to joke that it has no practical purpose whatsoever, but after the Sept. 11 terrorist attacks, Farley wondered if pure mathematics actually could help.” He remem-bered the opening line in the movie “A Beautiful Mind” about John Nash: “Math-e-maticians won the war.” And, he remem-bered Palestinian leader George Habash’s words: “Terrorism is a thinking man’s game.”

Being a thinking man, Farley says, “it’s better to fight smarter, not harder,” and fighting Al Qaeda with abstract theory could more accurately assess our vulner-ability to future attacks than current methods. As a bonus, it could also prevent financial resources from being wasted on phantom fears at the expense of real dan-gers. “People often view terrorist cells as a

NEWS

ENERGY SOLUTIONS
The Alliance for Global Sustainability met at MIT recently to tackle world problems.

NOBEL DNA SELLS ON EBAY
With a little help from MIT Nobel laureate Frank Wilczek and his wife, a school makes some money.

RESEARCH

IT’S ALL IN YOUR HEAD
Researchers at the Picower Institute have identified a gene that is key to the size and shape of the developing brain.

TRANSPLANT HOPE
A tissue engineer offers an update on this growing field.

ARTS

A MUSICAL JOURNEY
The harpsichord strikes just the right note for a grad student in the Media Lab.

A STRING THING
The Cypress String Quartet will premiere a new composition by Lecturer Elena Ruehr.

Page 2
Page 4
Page 5
Page 6
Page 7
Page 8
The Prosperous nations of the world must work with developing countries to find solutions to the pressing issues of providing electricity—not from fossil fuels but from renewable resources. Keynote speaker R.R. Pachauri told the meeting that the economic history of the north are just not available to the societies of the south, "The real issue is change in teaching, in curricula, and in the kind of research done. The developing world must have an enormous opportunity and responsibility in the development of policies for science and technology and how those subjects, so central to national life, are brought to bear on the future of the world." He developed the first course at MIT in scientific education, technology, and public policy jointly with James R. Killiam, the nation's first science advisor and previously president of MIT." Some 250 leaders from academia, industry, government and non-government organizations addressed the challenges of identifying and implementing sustainable-development strategies worldwide at the meeting. (Byers) a son, Frank of New York City; and two grandchildren.

Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood's best-known book is "Suburbs: Their People and Their Politics," published in 1958. His other books include "The Necessary Majority: Middle America and the Urban Crisis" (1972), and "Whatever Possessed Me: My Life As a Social Scientist" (1986). Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood's best-known book is "Suburbs: Their People and Their Politics," published in 1958. His other books include "The Necessary Majority: Middle America and the Urban Crisis" (1972), and "Whatever Possessed Me: My Life As a Social Scientist" (1986). Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood's best-known book is "Suburbs: Their People and Their Politics," published in 1958. His other books include "The Necessary Majority: Middle America and the Urban Crisis" (1972), and "Whatever Possessed Me: My Life As a Social Scientist" (1986). Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood's best-known book is "Suburbs: Their People and Their Politics," published in 1958. His other books include "The Necessary Majority: Middle America and the Urban Crisis" (1972), and "Whatever Possessed Me: My Life As a Social Scientist" (1986). Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood's best-known book is "Suburbs: Their People and Their Politics," published in 1958. His other books include "The Necessary Majority: Middle America and the Urban Crisis" (1972), and "Whatever Possessed Me: My Life As a Social Scientist" (1986). Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.

Wood leaves his wife, Margaret (Penny) Poulsen, his son, Frank of New York City; and two daughters, Frances of Cambridge and Barbara of Nantucket; four grandchildren; and three great-grandchildren.
Deborah Fitzgerald's responsibilities will be focused on undergraduate education and programs in the school, including the HASS component of the General Institute Requirement, and new initiatives to strengthen the humanities, arts and social sciences at MIT. She will work closely with the undergraduate and graduate program officers within the school's academic departments, sections and programs. As a member of School Council, she will be directly involved in faculty personnel decisions and other issues of importance to the school.

Deborah is a very fine historian of technology and one of the leading historians of American agriculture in the country today, Khoury said. "She is deeply interested in maintaining the high quality of our teaching programs and has had valuable experience in this area, both within her department and as a member of MIT-wide committees related to educational issues. Deborah has a tremendous sense of duty to the Institute, and I am certain that her presence within HASS and across MIT will find it a pleasure to work with her."

Fitzgerald's predecessor, Charles Stewart III, professor of political science, concluded his appointment as associate dean when he was appointed head of the Department of Political Science last January. Khoury said, "I am sure that Deborah will continue the fine efforts that Charles contributed to the school during his tenure as associate dean, and I am fortunate to be able to continue to work with Charles as a member of School Council now, in his capacity as a department head."

Fitzgerald is an active member of the History Society for the History of Technology and is currently serving as president of the Agricultural History Society. That organization honored her in 2003 with the Comstock Prize for best book of the year for "Every Farm a Factory: The Industrial Ideal in American Agriculture." She is also the author of "The Business of Breeding: Hybrid Corn in Illinois, 1889-1940."

Fitzgerald received a B.A. from Iowa State University in 1978 and a Ph.D. from the University of Pennsylvania in 1985. She followed her MIT stay with a faculty position in the Program in Science, Technology and Society. Fitzgerald has chaired the Ph.D. program in History, Anthropology, and Science, Technology and Society, which is administered by the Program in Science, Technology and Society and the History Faculty and the Anthropology Program. She has chaired the gender equity committee in the School of Humanities, Arts, and Social Sciences, and she has been involved with a variety of Institute-wide committees, including the committees on Academic Performance, Discipline and Graduate School Policy.
Nobel’s DNA going, gone on eBay

Elizabeth Thomson

MIT Nobel laureate Frank Wilczek and his wife, Betsy Devine, recently found themselves the subject of an unusual eBay auction: Some enterprising students from a Swedish high school had bought some glasses the two had snipped from while visiting the school and then offered them for sale.

There is a chance to own some DNA from a Nobel laureate. And if you can afford it, there is likewise a chance to own glasses.

According to the eBay text, the Wilczek glasses “was used to consume water by the famous physicist on December 16, only six days after he received the Nobel Prize in Stockholm. It has since not been washed, and the water that was still in it has been left to evaporate, leaving the DNA still in the glass.”

Devine and Wilczek approved the auction in advance.

On a side trip after the Nobel ceremony, Wilczek and Devine visited the Rydbergmuseum, or Swedish Upper Secondary School of Space Technology. “We had wanted to see the famous ‘space high school’ while we were in Sweden, so we were delighted to be invited there,” Devine said.

About 20 minutes before their scheduled talk, they were told of its unusual format; the two would be quizzed by 15 “aliens” in front of an audience of about 100 kids. Devine, in her web log, explains that “the aliens were planning to destroy all life on our planet, but their teacher had persuaded them to hold off if the visiting Nobel Prize winner and his spouse could give good answers to their many and diverse questions.”

The scheme, devised by Rydbergmuseum teacher Odd Minde, “was brilliant,” said Devine. “The students were completely involved, not shy, and came away with much more information than they would have from a normal ‘bigwig’ presentation.”

Among their questions: Does science prove that religion is wrong? Wilczek’s answer, according to Devine: “When religion talks about our aspirations and our sense of morality, I do not believe that science can contradict it. However, when religion contradicts science on matters of fact, religion must yield.”

In her webblog Devine reports that “fortunately, [the aliens] liked the answers we gave.”

The eBay auction of the couples’ drink- ing glasses attracted eight bidders. The final price was $30.69 plus $25 shipping.

Who won? Devine bought the glasses herself. She notes in her web log that she wanted “a souvenir of an unforgettable encounter with blue and green painted aliens at the Rydbergmuseum.”

Frank Wilczek is MIT’s Herman Feshbach Professor of Physics. He shared the 2004 Nobel Prize in Physics with H. David Politzer and David Gross for their theory that “the aliens were planning to destroy all life on our planet, but their teacher had persuaded them to hold off if the visiting Nobel Prize winner and his spouse could give good answers to their many and diverse questions.”

The scheme, devised by Rydbergmuseum teacher Odd Minde, “was brilliant,” said Devine. “The students were completely involved, not shy, and came away with much more information than they would have from a normal ‘bigwig’ presentation.”

Among their questions: Does science prove that religion is wrong? Wilczek’s answer, according to Devine: “When religion talks about our aspirations and our sense of morality, I do not believe that science can contradict it. However, when religion contradicts science on matters of fact, religion must yield.”

In her weblog Devine reports that “fortunately, [the aliens] liked the answers we gave.”

The eBay auction of the couples’ drinking glasses attracted eight bidders. The final price was $30.69 plus $25 shipping.

Who won? Devine bought the glasses herself. She notes in her web log that she wanted “a souvenir of an unforgettable encounter with blue and green painted aliens at the Rydbergmuseum.”

Frank Wilczek is MIT’s Herman Feshbach Professor of Physics. He shared the 2004 Nobel Prize in Physics with H. David Politzer and David Gross.

“People from all over the place are offering to beta-test it,” said Nanda, who is currently working on patenting Clocky. “Clocky is designed to interact with people, understand,” said Principal Research Scientist Michael Bove of the Media Lab. Bove is Nanda’s advisor and the director of the CEBalab, the Media Lab’s consumer electronics group. “The goal is to create ‘simple, ubiquitous, easy and delightful to use devices.’”

Bove has been overwhelmed by the amount of attention bestowed on Clocky so far. The group has received thousands of e-mails from around the country saying “I have a kid who needs a Clocky.”

Bove said that people have trouble waking up in the morning and that they are not making the experience any more pleasant. Clocky is designed to make waking up a game. “They ask when it is going to be available at Target,” she said, laughing.

Clocky’s spongy body is made to survive a fall each morning. A button on the base of the device is hit, Clocky rolls away and hides. Each time the snooze button is pressed, Clocky finds a new hiding space. “I wanted to make something with some personal relevance,” said Nanda, who has been profiled in dozens of newspapers across the country.

The idea for Clocky came to Nanda a couple of years ago. Her cat had had seven kittens. As a result, she had to wobble her toes every morning to wake her. Clocky works by the same principle. “I wanted Clocky to be like a troublesome pet that you love anyway,” said Nanda, who will soon be selling the product. Clocky has a soft surface to make waking up the experience more fun.

Nanda hopes that people will not skip Clocky. The device is being profiled on “Good Morning America” next week and has been profiled in dozens of newspapers across the country.

Bove has been overwhelmed by the amount of attention bestowed on Clocky so far. The group has received thousands of e-mails from around the country saying “I have a kid who needs a Clocky.”

Bove said that people have trouble waking up in the morning and that they are not making the experience any more pleasant. Clocky is designed to make waking up a game. “They ask when it is going to be available at Target,” she said, laughing.

Clocky’s spongy body is made to survive a fall each morning. A button on the base of the device is hit, Clocky rolls away and hides. Each time the snooze button is pressed, Clocky finds a new hiding space. “I wanted to make something with some personal relevance,” said Nanda, who has been profiled in dozens of newspapers across the country.

The idea for Clocky came to Nanda a couple of years ago. Her cat had had seven kittens. As a result, she had to wobble her toes every morning to wake her. Clocky works by the same principle. “I wanted Clocky to be like a troublesome pet that you love anyway,” said Nanda, who will soon be selling the product. Clocky has a soft surface to make waking up the experience more fun.

Nanda hopes that people will not skip Clocky. The device is being profiled on “Good Morning America” next week and has been profiled in dozens of newspapers across the country.

Bove has been overwhelmed by the amount of attention bestowed on Clocky so far. The group has received thousands of e-mails from around the country saying “I have a kid who needs a Clocky.”

Bove said that people have trouble waking up in the morning and that they are not making the experience any more pleasant. Clocky is designed to make waking up a game. “They ask when it is going to be available at Target,” she said, laughing.

Clocky’s spongy body is made to survive a fall each morning. A button on the base of the device is hit, Clocky rolls away and hides. Each time the snooze button is pressed, Clocky finds a new hiding space. “I wanted to make something with some personal relevance,” said Nanda, who has been profiled in dozens of newspapers across the country.

The idea for Clocky came to Nanda a couple of years ago. Her cat had had seven kittens. As a result, she had to wobble her toes every morning to wake her. Clocky works by the same principle. “I wanted Clocky to be like a troublesome pet that you love anyway,” said Nanda, who will soon be selling the product. Clocky has a soft surface to make waking up the experience more fun.

Nanda hopes that people will not skip Clocky. The device is being profiled on “Good Morning America” next week and has been profiled in dozens of newspapers across the country.

Bove has been overwhelmed by the amount of attention bestowed on Clocky so far. The group has received thousands of e-mails from around the country saying “I have a kid who needs a Clocky.”

Bove said that people have trouble waking up in the morning and that they are not making the experience any more pleasant. Clocky is designed to make waking up a game. “They ask when it is going to be available at Target,” she said, laughing.

Clocky’s spongy body is made to survive a fall each morning. A button on the base of the device is hit, Clocky rolls away and hides. Each time the snooze button is pressed, Clocky finds a new hiding space. “I wanted to make something with some personal relevance,” said Nanda, who has been profiled in dozens of newspapers across the country.

The idea for Clocky came to Nanda a couple of years ago. Her cat had had seven kittens. As a result, she had to wobble her toes every morning to wake her. Clocky works by the same principle. “I wanted Clocky to be like a troublesome pet that you love anyway,” said Nanda, who will soon be selling the product. Clocky has a soft surface to make waking up the experience more fun.

Nanda hopes that people will not skip Clocky. The device is being profiled on “Good Morning America” next week and has been profiled in dozens of newspapers across the country.

Bove has been overwhelmed by the amount of attention bestowed on Clocky so far. The group has received thousands of e-mails from around the country saying “I have a kid who needs a Clocky.”

Bove said that people have trouble waking up in the morning and that they are not making the experience any more pleasant. Clocky is designed to make waking up a game. “They ask when it is going to be available at Target,” she said, laughing.

Clocky’s spongy body is made to survive a fall each morning. A button on the base of the device is hit, Clocky rolls away and hides. Each time the snooze button is pressed, Clocky finds a new hiding space. “I wanted to make something with some personal relevance,” said Nanda, who has been profiled in dozens of newspapers across the country.

The idea for Clocky came to Nanda a couple of years ago. Her cat had had seven kittens. As a result, she had to wobble her toes every morning to wake her. Clocky works by the same principle. “I wanted Clocky to be like a troublesome pet that you love anyway,” said Nanda, who will soon be selling the product. Clocky has a soft surface to make waking up the experience more fun.

Nanda hopes that people will not skip Clocky. The device is being profiled on “Good Morning America” next week and has been profiled in dozens of newspapers across the country.
Researchers ID gene linked to brain size

A tiny molecule is key to determining the size and shape of the developing brain, researchers from the Picower Institute for Learning and Memory at MIT reported in the March issue of Nature Neuroscience. This molecule may one day enable scientists to grow new brain cells in the adult brain.

A candidate plasticity gene and its growth-promoting protein, CPG15, could potentially be used to develop therapies for regenerating brain cells in cases of disease. While stem cells regenerate neurons in only a few regions of the adult brain, researchers have speculated that a lack of adult stem cells may cause memory deficits and other disorders.

Elly Nedivi, Fred and Carol Middleton associate professor in brain and cognitive sciences at MIT, found that Cpg15—one of many novel plasticity-related genes she and her colleagues identified as essential to the survival of neural stem cells in early development—is regulated during brain development.

Nedivi, postdoctoral associate Ulrich Putz and brain and cognitive sciences graduate student Avery C. Harwell identified a form of CPG15 that protects cortical neurons from apoptosis, or programmed cell death. Apoptosis is a normal and essential part of early development, when brain cells proliferate rapidly, and some are killed off, but little is known about how apoptosis of growing neurons is regulated.

CPG15 is one of the few molecules shown to be causal for survival of specific stem cell populations in the developing brain, Nedivi said. “By controlling apoptosis, CPG15 allows the progenitor pool (of cells) to expand, and even modest changes in the size of the progenitor pool during its exponential growth phase can drastically affect the final size and shape of the brain,” he said.

Over-expressing CPG15 in rats gives them bigger brains. In addition, their enlarged brains have grooves and furrows like evolved mammalian brains with larger surface areas. “We propose that by controlling early apoptosis in specific progenitor populations, CPG15 has a role in regulating size and shape of the mammalian forebrain,” the authors wrote.

This knowledge may one day be used to engineer normally occurring stem cells in the human brain, or to grow neurons outside the body and then deposit them where they are needed to replace damaged or diseased tissue.

This work was supported by the National Institute of Neurological Disorders and Stroke and by the National Institute for Medical Research.

MATH

Continued from Page 1

graph, with members as nodes connected to each other if they have a direct communications link,” Farley says. “But they’re leaving out the most important part, the hierarchy,” he says. “Terrorist cells have chains of command (quasi-ordered sets) from leaders to middlelevel operatives to the workers who carry out orders.”

As simplified examples, the graph theory would conclude that blocking four intersections along Massachusetts Avenue between Kresge Auditorium and Harvard Square, as well as Kresge and a fourth route from driving to the square. But students could use side streets to bypass the blocked intersections.

Likewise, the graph theory would show that you cannot stop the train of a terrorism terrorist cell arranged as a binary tree. This gives a 33 percent chance of disabling the whole cell. Even without knowing the cap- tives’ positions in the hierarchy, it’s still possible to plug in the “cut sets” that could break the command chain into a probability formula, and that probability is, unhap- pily, only 33 percent. “Lattice theory won’t tell you how to fight the terrorists, but it might tell you if you’ve won the battle,” Farley says.

Farley’s hypothesis, published in late 2003, interests several military researchers, including Rebecca Goosby of the Office of Naval Research. “With covert missions, there’s a lot of missing data, and stuff that is not worth speaking,” says [sic]. “I came up with a new approach and drew up good questions” for approaching those “very muddy” issues in an analyti- cal way.”

The associate professor of applied ma- thematics at Vanderbilt University, Farley was a Dr. Martin Luther King Jr Visiting Professor in the MIT Department of Math- ematics from January 2003 to December 2004. He is also the co-founder of a math- ematical modeling consulting firm. “Our ultimate goal is to develop software that can be used directly by law enforcement experts without these rigorous mathematical skills can ask—and answers—those same analytical questions about security.”

Sense scent’s complexity

Sasha Brown

With a Ph.D. in biophysics and physiol- ogy from the University of London, Turin has been studying scent for years. Turin’s life and research are the subject of a 2003 book by journalist Chandler Burr, “The Emperor of Scent: A Story of Perfume, Obsession and the Last Mystery of the Senses.”

In the early 1980s, Turin learned of a passion and talent of the investigators that could analyze molecules and their vibra- tions. He quickly became convinced that the human nose acts as a spectroscope of sorts for scent.

As the various theories have proven to be controversial at best, he said. Turin has identified many molecules that are shaped similarly, but whose scents are different, disproving the more popular shape theory of smell. However, proving his vibration theory has been slightly more difficult, he said. Nevertheless, his research has been successful enough to launch his own scent company, Flexilar. He said Flexi- lar’s work has nine synthetic scents on the market.

Sasha Brown

News Office

Ut all the true senses, the sense of smell is taken the least seriously, Dr. Luca Turin of Flexilar Inc. told a standing-room-only crowd gathered in Room 180 in the Biology Building on Monday, April 4. “It is a psychological resistance to taking smell seriously,” said Turin, who hopes to change that with his lifelong passion and talent for analyzing molecules and their vibrations.

Turin believes the problem is the com- mon misconception that “scent is just a smell,” he said. “We are not aware of the molecule’s role in the human body.”

For scientists, scent has proven elusive because it can be lost to impossible to predict a scent by looking at its molecules before synthesis. Traditionally, the shape of molecules has been thought to deter- mine scent, but Turin’s theory is that the vibration of molecules is the true cause of smell.
Tissue engineering: It's a real growth field

Sasha Brown
News Office

Driven by a shortage of organs for transplantation and a desire to create a “better” cartilage, a feat long considered impossible, a team of researchers at the Massachusetts Institute of Technology (MIT) has made it possible for doctors to use a patient’s own cells to repair damaged cartilage, a feat long considered impossible. The idea behind tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, who gave a brief history lesson during her 45-minute lecture. The chimera and suffixes of ancient times accompanied by two ancient civilizations’ need for survival. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.

Vivjak-Novakovic began the talk by pointing out that the vision has to be practical. There are currently close to 90,000 people waiting for organ transplants in this country. “It is enough to go around, she said.

The field of cellular tissue regeneration and transplantation is not a new one, said Vivjak-Novakovic, whose talk was part of the Frontiers in Health Science lecture series held every Friday night in the Skyline Room. The March 18 lecture, “Tissue Engineering: Vision and Cell Culture,” featured Vivjak-Novakovic and her entire team and was followed by a question and answer period.
Musical journey spans the ages

Jean Chemick
Office of the Arts

Mary Farbod is in a unique position to discuss the history of music. As a graduate student in the Media Lab, she has helped develop computer software for modern composers. And, she plays the harpsichord.

Farbod, who will present a harpsichord recital this Friday at noon in the MIT Chapel, is one of 50 young artists from around the world chosen to compete next month at the Prague International Harpsichord Competition. If she does well, she’s likely to receive much wider exposure and professional engagements, she said.

She has not taken the traditional career path of a professional musician. Although she studied the piano as a child, she admits, “I would haveµlarized probably”

Then, when she was 17, Farbod developed a bad case of tendinitis in her hands and had to stop practicing for a year, which resulted in her going to Harvard instead of a conservatory.

At Harvard she became interested in computers. “All my energies had been focused on the piano,” she said. “I wanted to do something else while I had a chance.”

In high school, computers had been mysterious “black boxes.” She got her chance to decode them when she majored in computer science as well as music.

Farbod played in several Harvard ensembles. Her sophomore year, the Bach Society performed the Brandenburg Concerto, and she played the harpsichord for the first time. Early music, like Bach’s, was written for the harpsichord, which gives it its intended, subtler sound. “The music is harder to convey,” said Farbod, “and the instrument is harder to use to convey the music.” Farbod said she had trouble not playing it like a piano.

After graduation she enrolled in a composition program at Brandeis, “disappointed. “I didn’t like composing,” she said, “and I didn’t like the music I composed.” She left after two years and enrolled in a Ph.D. program in the MIT Media Lab.

“It seemed natural to try to combine my interests,” Farbod said. Having abandoned the idea of composing herself, she has instead worked on the development of Hyperscore, computer software that helps professional composers and small children alike create new music.

Developed by Professor Tod Machover at the MIT Media Lab as one of a series of new technologies called Hyperinstruments, Hyperscore replaces musical notation with computer graphics, allowing the composer to write music without knowing music theory.

While at the Media Lab, Farbod was offered an Emerson Music Fellowship across campus at MIT’s Music Section and began her own training again. This time she chose the harpsichord over the piano because of her interest in early music. In December, she submitted a tape to the Prague competition. The response was positive, but Farbod was not one of the 12 finalists.

Her competitors will be full-time conservatory students, and her Media Lab research leaves her little time to prepare. But she is playing for herself now.

“I’d love to perform,” she said. “I’ll always play, whether as a profession or a hobby.”

 unlinkable

Eleni Sikelianos

Sikelianos to read poetry

Eleni Sikelianos, great-granddaughter of famed Greek lyric poet Angelos Sikelianos and a noted poet in her own right, will present a poetry/文ind on Thursday, April 7, at 7 p.m. in Room 6-120. A native of California, she now teaches at Naropa University in Boulder, Colo., but remains a Californian at heart. “Her melding of persons and place makes both contemporary and eternal, a remarkable ‘California poet.’”

The Cypress String Quartet (from left: Ethan Filner, violin; Jennifer Kloetzel, cello; Cecily Ward, viola; Tom Stone, violin) will perform an original work by Lecturer Elena Ruehr on Friday.

Quartet to premiere lecturer’s work

Music and Theater Arts Lecturer Elena Ruehr had big shoes to fill when composing her string quartet commissioned by the Cypress String Quartet: Mozart’s and Beethoven’s.

Premiered recently by the quartet in San Jose, Calif., the piece is Ruehr’s “Dissonance” Quartet and Beethoven’s Quartet Op. 59, No. 3 (“Razumovsky”). According to Reviewer Richard Scheinin, “Ruehr’s quartet sounds as if it has soaked up essential qualities from both: shifting light-dark moods and textures; great dancing rhythms; and, best of all, articulate songs. “

The quartet will present the Boston premiere of Ruehr’s String Quartet No. 4 in a concert on Friday, April 8, at 8 p.m. in Kresge Auditorium. The concert will also feature the Mozart and Beethoven works.

Since its inception in 1996, the Cypress String Quartet has commissioned and premiered more than 25 works from many of America’s leading composers. The quartet makes this music part of its regular touring repertoire.

Ruehr’s works have also been commissioned and performed internationally by the Borromeo and Shanghai string quartets, Naumburg winning baritone Stephen Salters, the Boston Modern Orchestra Project and The Metamorphoses Chamber Ensemble. Her dance opera “Toussaint L’Ouverture” was performed in 2003, and her work “Simmer,” for string orchestra, is available on Albany Records performed by the Metamorphoses Chamber Ensemble.

The Cypress Quartet will be in residence at MIT from April 6–9. The residency was funded in part by the MIT Artists-in-Residence Program of the Office of the Arts, is on view at the Allston Street Gallery (450 Har- rison Ave., Boston) through April 30. The installation is an expanded version of a project Fred Fonteyn recently exhibited in Miami last summer as one of five finalists for the prestigious 2004 JFK Foundation Fellowship in the Visual Arts. Fernandez will hold a public critique conversation about her work with Rose Art Museum curator Raphaela Plattow at the gallery on Saturday, April 16 at 2 p.m.

ARTS NEWS

Kortney Adams, who received the S.M. degree in civil and environ-

mental engineering in September 2000, has won the 2005 Independent Reviewers of New England Award, Best Supporting Actress in a Small Company for her portrayal of Mrs. Rochester in “After Mrs. Rochester” at the Wellesley Summer Theatre. The Awards Gala was held on March 21 at the Lenox Hotel Ballroom.

Julie Moir Messervey, who studied at MIT while at Wellesley and received master’s degrees in both architecture and city planning from MIT in 1978, is receiving the Land- scape Design Award at the American Horticultural Society’s annual Great Gardens of America Conference. Messervey, recently in the news for her “South of France” environment created with Professor Tod Machover’s musically interactive flowers for the Marshall Field’s and Bachman’s Spring Flower Show in Minneapolis, has also taught landscape design at MIT’s Graduate School of Architec-

“Home Sweet Gated Home,” an installation by Magda Fernan-

dez, administrative assistant in the Office of the Arts, is on view at the Allston Street Gallery (450 Har- rison Ave., Boston) through April 30. The installation is an expanded version of a project Fred Fonteyn recently exhibited in Miami last summer as one of five finalists for the prestigious 2004 JFK Foundation Fellowship in the Visual Arts. Fernandez will hold a public critique conversation about her work with Rose Art Museum curator Raphaela Plattow at the gallery on Saturday, April 16 at 2 p.m.

Take a new look at lacquer

Asao Sakamoto, president of Studio Eyes in Japan, will speak on “The Future of Lacquer in Art and Science” on Tuesday, April 12, at 5:30 p.m. in Room E51-109. Sakamo-
to has a special interest in urushi, the sap of a family of sumac trees found in various parts of Asia and has experimented with its use in diverse artistic, industrial and scien-
fic applications.

In addition to extending the tradi-
tional palette of colored lacquer by the use of titanium and smoldered sil-
ver leaf, Sakamoto has investigated urushi’s many properties, including its resistance to heat, water, static, oxygen and hydrogen. Most recent-
ly, he has explored the use of urushi as a noncorrosive coating for motors of artificial hearts and oil gauges that contain rare earth magnets, both of which are subject to oxygen corrosion.

Sakamoto will be speaking on Tuesday, April 12, in Room E51-095. For more information, call 617-253-3142.
Choreographer moved to speak

Lucinda Childs

Postmodern choreographer Lucinda Childs, whose "East Parlor Suite" recently received its world premiere in Boston Ballet's "Falling Angels" program, will present a guest lecture at MIT in "FNTs" (Traditions in American Concert Dance) courses on Thursday, April 7, from 1-2:30 p.m. in Room 1-150.

Lecturer Iris Fanger teaches the class. Space is limited and restricted to members of the MIT community. To attend, please e-mail ifanger@mit.edu.

MIT Tech Talk
MIT Tech Talk
HOME PAGE Tech Talk
ARCHITECTURE/Sports
Reading

Science/Technology
Music
Business/Money
Film
Performance
Exhibit
Architecture/Planning
Humanities
Special Interest
Featured Event

MIT Tech Talk
ARCHITECTURE/Sports
Reading

Science/Technology
Music
Business/Money
Film
Performance
Exhibit
Architecture/Planning
Humanities
Special Interest
Featured Event

Go Online! For complete events listings, see the MIT Events Calendar at: http://events.mit.edu. Go Online! For the Arts website at: http://web.mit.edu/arts/office.