Graduation celebration

Happy graduates file out of Killian Court after Commencement (above). Below left, Jonathan Sheffi, who received an S.M. in computer science, dances with his mother Anat. Jonathan’s father (not shown) is Yosef Sheffi, professor of civil and environmental engineering and engineering systems.

Atmosphere is sunny and bright

Pastel-colored spring suits and sleeveless summer dresses, bright straw hats and strappy high-heeled sandals, nicely pressed suits and ties—the families in Killian Court wore their own Commencement regalia last Friday, a beautiful spring day for MIT’s Commencement.

The thermometer inched its way up to a more-than-cooperative 65 degrees at midday, after weeks of cool and rainy weather. To help guests cope with any unexpected heat, a 24-ounce bottle of Poland Spring water had been placed on each of the approximately 5,000 beige folding chairs lined up in neat columns and rows like an accounting ledger on Killian Court.

Meanwhile, at 77 Massachusetts Avenue, Kay Jurkiewicz and May Matsamura had parked their little red wagons full of floral bouquets on the sidewalk near the Student Center. Matsamura reckons they sold about 40 bouquets of roses (singles for $3 and up to $20 for a larger arrangement) and made a profit of $145.

Zerhouni explains the ‘50/50 rules of life’

Elias A. Zerhouni, director of the National Institutes of Health, urged members of MIT’s Class of 2004 to participate in solving public health and environmental problems that developed following the “third Big Bang—the Big Bang of knowledge” in his address at MIT’s 138th Commencement on Killian Court.

“Life sciences and their applications will be the defining challenge of the 21st century, bar none,” he said in his 20-minute speech to the 2,157 graduates. “The reason is that we are changing our environment at a speed which will require us to understand life sciences to a degree we do not understand today. And let me tell you, it will require the intelligence and commitment of many classes of graduates like yours.”

Zerhouni traced three “Big Bangs”—the birth of the universe, the formation of life and life sciences, and the rapid expansion of life sciences and technology.

PEOPLE

MATRIMONIAL HISTORY

Institute community members tie the knot as same-sex marriage becomes legal in Massachusetts.

Page 2

OSP HEAD RETIRING

Julie Norris, director of the Office of Sponsored Programs, will retire on Sept. 30.

Page 2

RESEARCH

LIVE LONG AND PROSPER

A protein link found between aging and diet moves humans a bit closer to longer, healthier lives.

Page 3

HOOKING UP

A mobile phone application searches profiles of those nearby.

Page 3

COMMENCEMENT / TECH DAY

E.T. PHONE HOME

Alumnus Mike Fincke attends his 15th reunion—from the International Space Station.

Page 8

ALUMNI BLING-BLING

A fourth-generation MIT graduate sports the family collection of brass rats.

Page 5
MIT has its share of pioneering newlyweds

Spring is a popular time for weddings, but it was an especially sweet time this year for same-sex couples—including several in the MIT community—who were legally allowed to get married in Massachusetts as of May 17. Among those from MIT were Lorna Gibson, the Matsoukas Professor of Materials Science and Engineering and chair-elect of the faculty, who married her partner Jeannie Hess in a ceremony at the Arnold Arboretum on May 21; and Bill Fregosi, technical coordinator for theater arts, and his partner Frederic “Fritz” Bell, who tied the knot on May 23 in Brookline.

Fregosi and Bell will have a Quaker ceremony and reception party in August, “but we decided to move very fast on the legalities out of distrust for Gov. [Mitt] Romney’s possible actions against same-sex marriage,” said Fregosi, who has been designing theatrical scenery and teaching for 29 years at MIT. “We picked the 23rd because it was actually our seventh anniversary.” The couple had a wedding brunch “in the only place we could get a table that morning—a sports bar, which is pretty funny to those who know us well,” he added.

Stephen Pepper, an administrative assistant in the Academic Resource Center, married Sam Goldfarb, a psychologist and partner of six years, on May 21 at the Church of the Covenant and the Arlington Street Church in Boston. They plan a civil ceremony in June.

“This month and the months to come find me happily exercising my new ability to prelate at same-sex weddings,” said Pepper, who is an ordained minister in the United Church of Christ and acting pastor of Central Congregational Church in Jamaica Plain. “In each case, the couples have lived together for years—often gay couples have been together for 41 years!—and consider themselves already married—so society is finally catching up with them.”

Mit alumni who are same-sex newlyweds include Marisa Kirschbaum (S.B. 1999), who married Marie Bober, and Sarah A. Russell (Ph.D. 2003), who married Leslie Longo (both changed their last name to Lewis). The last couple became a complete nuclear family in almost one fell swoop. “We got married on the 17th and had our daughter on the 25th,” a tired but happy Russell said. “I think we got to be the first same-sex couple in the state to both be on the birth certificate!”

—Alice C. Waugh

Norris to retire as director of Office of Sponsored Programs

Julie Norris, director of MIT’s Office of Sponsored Programs (OSP), has announced her retirement, effective Sept. 30.

During her decade of leading OSP, Norris has been one of MIT’s senior spokespeople in support of the higher education research enterprise and has contributed significantly to the development of federal policies in support of research.

Commenting on her announcement, President Charles M. Vest said, “Julie’s expertise and wisdom in research administration and federal relations have been of extraordinary benefit not only to the Institute, but to the nation’s research universities overall. Her common sense and creativity, combined with a singular talent for bringing diverse parties together in working out solutions to thorny problems, are without peer.”

Under Norris’ direction, MIT developed the country’s premier electronic research administration proposal development and award management system (COEUS). It has now been licensed to more than 100 institutions across the country. She has served as MIT’s primary contact with federal agencies on research administration issues, and she chaired the Council on Governmental Relations (Cogr), a national organization of top research institutions. Norris also chaired the Federal Demonstration Partnership, a cooperative initiative among 10 federal agencies and 92 institutional recipients of federal funds, whose purpose is to reduce the administrative burdens associated with research grants and contracts.

“MIT is extremely fortunate to have benefited from Julie’s expertise,” Executive Vice President John Curry said. “Her knowledge, skills, professionalism and nationwide contacts have ensured MIT’s leadership in the areas of grants and contracts.”

Curry said the Institute would begin an aggressive search immediately for a new OSP director but that Norris will be available on a consulting basis during the transition. Her expertise will come into play during the negotiation for the renewal of the contract for Lincoln Laboratory and in export controls and research compliance. She also will be available to assist the new director as necessary.

Longtime mathematics department head Ted Martin dies at age 92

Professor Emeritus William “Ted” Martin, former head of the Department of Mathematics and chair of the faculty, died May 30 at the age of 92.

Under Martin’s leadership from 1947-68, the mathematics department grew from a small service department into one of the major world centers of pure and applied mathematics. During his first year as head, Martin proposed a “postdoctoral instructorship or visiting lecturership” program. The C.L.E. Moore Instructorship Program was launched in 1949 and continues to attract the most promising postdoctorates in mathematics to MIT to develop their research and teaching careers.

Martin collaborated with MIT faculty members R.H. Cameron, Stefan Bergman and Norbert Wiener on analytic functions of several complex variables and on the Wiener integral or Wiener measure, which Wiener proposed in 1930. During the 1950s he wrote a series of papers with Salomon Bochner, establishing generalizations of classical results in function theory for analytic functions on complex spaces with singularities.

Following his tenure as department head, Martin chaired the faculty from 1969-71 and the Education Division Steering Committee from 1972-73.

Denise Brehm
November 2002

Forget the drastic reduction in carbs and calories called for by diet dictators. The day when people can’t get enough of their favorite foods, stay thin and live to be 120 without getting age-related diabetes or cancer may be nearer than we think. Researchers at MIT believe they’ve found the key to a long, lean, healthy life in a single protein that controls whether a mammal is fat or thin.

The work could lead to drugs that mimic that protein, allowing human beings to get the longer life span and other benefits of extreme caloric reduction without the negative side effects, said Professor of Biology Leonard Guarente.

Guarente and other scientists have known for decades that caloric restriction (CR) extends the life span of invertebrates, but they didn’t know—but probably should—why. The restriction works at the molecular level. And it’s quick. The server scans for IDs and other’s name, thumbnail photo and common information about the person, which makes this a very simple system.
“When the families see our flowers, they remember, ‘Oh, I should give her something. He or she deserves it for the accomplishment,’” said Matsamura, who lives in New Hampshire.

And those flower bouquets found their way into Killian Court with the families, waiting to place them in the arms of graduates. Parents and grandparents, siblings and children all milled around, chatting, snacking, taking photographs. And then, the voice: “Ladies and Gentlemen. The academic procession will now enter Killian Court.”

They rose, looked about expectantly and finally set their sights on the center aisle where familiar faces began to appear. First faculty and staff, and then the faces the families had been waiting for—their own graduates.

R. Erich Caulfield, president of the Graduate Student Council, gave a poetic oration to his co-graduates, ending with “Congratulations” perfectly spoken in a dozen or more languages.

Later, diverse languages were again heard in the cadence of names carefully pronounced by the two readers.

Afterwards, Wimla Kothari, who came from India to see her granddaughter, Rachana Oza, receive the S.B. in management, asked: “Who was the young man who was such a good speaker?”

“At first I thought he was speaking in high English,” said her daughter, Rachana’s mother, Abha Oza. “Then I realized he was being entertaining. He certainly kept the crowd’s attention.” Oza, her husband and 11-year-old son Anand had traveled from N. Potomac, Md., for the ceremony. Anand was engrossed in his paperback book.

In the first aid tent, things were quiet. There were requests for ibuprofen, sunscreen and a few baby wipes, said Linda Forgues, the triage nurse at MIT Medical who staffed the tent from 8 a.m. to 2 p.m. with Dr. David Diamond and Dr. David Shein.

“Most of our [medical] requests are weather-oriented, and today is a perfect day,” said Forgues.

Cameron Bass, who received the S.B. in mechanical engineering, carried a large plastic lawn goose under his arm. His mother, Liz Bass, said he had stolen it from a friend’s lawn in the 10th grade.

“Since then it’s been a lot of different places, but I never thought it would graduate from MIT,” she said.

“We left a ransom note,” said Cameron Bass. “And my friend’s mom baked us cookies, but we didn’t give the goose back. We’ve carried it across the country and taken pictures of it in a lot of different places.”

Bass wore the goose strapped to his head during Commencement; the goose wore the mortarboard. Bass also wore a “Cameron” plaid kilt (light green and red) with hiking boots. (For more information about Bass’ dress sense, see http://web.mit.edu/newsoffice/2003/makeover-1217.html.)

The goose tucked under his arm, he and his family and friends headed off Killian Court to a graduates’ luncheon. “I want to get my last bit of free food for my $160,000 in tuition,” he said.

“I don’t want to talk about,” said his father, Stuart, with a laugh. “I’m just a welder.”

By then, Facilities workers were busy restacking the chairs on the lawn, now littered with Poland Spring water bottles. By 5 p.m., it would all be gone.

Continued from Page 1

Students find creative ways to decorate their mortarboards during Commencement. Left: Baris Yuksel (S.B. in EECS) sports a penguin. Center: Brian Loux (S.B. in civil and environmental engineering) used his mortarboard to depict characters from his favorite cartoon, AquaTeen Hunger Force. Right: A goose perches between Cameron Bass (S.B. in mechanical engineering) and his mortarboard.

Katharine Ricke (S.B. in earth, atmospheric and planetary sciences) chose her makeup with MIT’s cardinal and gray school colors in mind.

Students find creative ways to decorate their mortarboards during Commencement.
Brass rat gets raised to the fourth power

Elizabeth Powers Boyle, garbed like her fellow graduates in black robe and mortarboard, happily accepted her diploma (S.B. in civil and environmental engineering) last week. But Boyle wore something else that would have been more appropriate for a “brass rat” class ring, because she’s a fourth-generation graduate of MIT.

“We thought it would make this special occasion more memorable to have Ellie wear all the family rings,” said David Shein, Melanie Powers (S.M. 1977 in management). “Unfortunately, Ellie’s great-grandfather, Melville Powers, graduated before there were brass rats, so Uncle David lent his ring for the occasion.”

The first Powers to attend MIT was Ellie’s grandfather, Melville W. Powers, who earned the S.M. in naval architecture during World War I and stayed on at MIT for several years as a teacher. Eventually, he rose to the rank of commander in the U.S. Navy.

Both of Melville’s sons, the late Donald Powers (S.B. 1943 in electrical engineering and computer science, S.M., E.E.) and David Powers (S.B. 1948 in physics), graduated from MIT.

“We’re all very proud of Ellie,” said Elizabeth’s Uncle David. “I think her accomplishment is much more difficult than in my day. Competition to get into MIT is much more fierce, and the student body consists of many of the best scholars in the world.”

The Powers’ third-generation graduate was Ellie’s mother, Melanie Powers. In addition to her Sloan degree, she earned a master’s in education from Harvard as well as a master’s in statistics and a Ph.D. in organizational behavior (both from Stanford).

“It’s a remarkable accomplishment simply to graduate from MIT,” said Beth Garvin, executive vice president and CEO of the MIT Alumni Association. “But a fourth-generation graduate is extremely rare and worthy of a great deal of pride for the Powers family.”

David Powers, who served as his class secretary for several years, has seen a lot of change at MIT. “The campus sure looks different,” he said. “The only thing that hasn’t changed is the intense work ethic that comes with the name MIT. It’s people like that who earn the right to wear the MIT namesake.”

Ellie’s great-uncle concurred. “In my day, the phrase was Tech is hell,” he said. “The love-hate relationship is still there.”

Ellie, pointing to the cryptic initials HFPY on the 2004 version brass rat. “But the love for MIT usually wins out as the line between work and play eventually gets blurry here.”

Despite the tradition, Ellie says her family didn’t exactly encourage her to attend MIT. “I have a lot of interests, so I think my mom thought I would grow to resent the heavy workload,” she said, adding that she didn’t think MIT would appeal to her. “I wanted the full college experience and I assumed MIT would be all study and nothing else. But that’s not true.”

But visits to campus eventually won her over. “People care about their work here, and particularly their campus.”

Ellie’s Uncle David considered a lot of schools and found the passion among MIT students was very unique—and very appealing,” she said.

And the workload? “Mom was right,” she said with a laugh. “I thought I knew what hard work was until I came here. But the intensity is well worth it. There’s no busy-work here. It’s all applied knowledge. MIT stresses the strategic and the pragmatic as opposed to simply rote skills.”

In looking back over her four years here, Ellie wishes she had had more time for extra-curricular activities, though enjoyed being a member of the Alpha Chi Omega sorority. She also became a member of the Society for Women Engineers and was active in Roadkill Buffet, MIT’s improv comedy troupe. And this year she won the Institute’s Louis Kampf Writing Prize for her thesis on “The Feminization of Teaching in America.”

Ellie will soon begin work at Microsoft as a program manager. The job, one of five she was offered, will return her to her northern California roots. Eventually she’d like to start her own computer-related business. But if this doesn’t work out, she has a backup plan. “If the computer field for some reason loses its luster, I will become a world-renowned chocolatier traveling to the ends of the earth to sample and evaluate the world’s best chocolates. This is something that no computer can do,” she said with a grin.
There is a race between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.

There is a real race going on between our ability to understand how we respond to our environment biologically and our ability to change that environment, and with that we can understand how we respond to our environment academically and our ability to change that environment, and with that we can understand how we respond to our environment academically.
Corporation names 14—including Vest

The MIT Corporation, the Institute’s board of trustees, elected three life members—including outgoing President Charles M. Vest—and 11 term members at its quarterly meeting on June 4. Dana G. Mead, chair of the Corporation, announced the election results.

All memberships are effective July 1 except that of Vest, who will begin his term after he ends his duties as president. At that point, the Corporation will consist of 74 distinguished leaders in education, science, engineering and industry, 22 of them life members. An additional 33 individuals are life members emeriti, participating in meetings but without a vote.

Joel M. Seligman (S.B. 1968), senior associate at Cambridge Systematics, Inc., is president of the Association of Alumni and Alumnae of MIT. A Corporation member since 2000, she serves on the MIT Corporation Committee on the Presidency.

MIT presidential search process continues

The MIT presidential search process is proceeding with determination and focus toward identifying “the best candidate out there” to succeed Charles M. Vest.

So said the chairs of the two committees leading the search for the 16th president of the Institute as they with determination and focus toward identifying “the very insightful, helpful and just superb.”

From alumni to Lincoln Lab, there has been extensive and very active expression of views. Students have been fully engaged in the process,” Champy said. “That activity has been broad and of high quality. No matter who is chosen, there will be a very insightful, helpful and just superb.”

There have been rumors and media speculation both on and off campus that the candidate has been found, the committees have been operating from the beginning in closed-door sessions and will continue to do so until a candidate is selected. Corporation members are notified and a vote is taken.

Newly elected Corporation members are:

- Gordon Binder
 - Managing director, Constable Capital, LLC
 - Term: Five years (Corporation member since 2000)
 - Current MIT activities: Corporation Committee on the President; Corporation Membership Committee; visiting committee for chemical engineering (chair since 2000), Biological Engineering Division

- John Krob Castle
 - Chair and CEO, Castle Harlan, Inc.
 - Term: Life membership (Corporation member since 1995, previous term 1987-95)
 - Current MIT activities: Campaign Steering Committee; Corporation Development Committee; visiting committees for economics and physics Kane 24 Award (1993), Corpo- rate Leadership Award (1980), Founding Life Sustaining Fellow (1979)

- Morris Chang
 - Chair, Taiwan Semiconductor Manufacturing Co., Ltd.; president and chair, Industrial Technology Research Institute
 - Term: Five years (Corporation member since 1999)
 - Education: S.B. 1952, S.M. 1953, M.E. 1955 (all from MIT), Ph.D. 1964 (Stanford)
 - Current MIT activities: Visiting committee for economics and mechanical engineering

- Gururaj “Desh” Deshpande
 - Founder and chair, Syamore Networks, Inc.
 - Term: Five years (Corporation member since 2000)
 - Education: B. Tech. 1973 (Indian Institute of Technology), M.S. 1975 (University of New Brunswick), Ph.D. 1979 (Queens University)
 - Current MIT activities: Corporation Membership Committee; visiting committee for materials science and engineering (chair since 2000)

- Carleton S. Fiorina
 - President and CEO, Hewlett-Packard Co.
 - Term: Three years

- Carleen S. Fiorina
 - President and CEO, Hewlett-Packard Co.
 - Term: Three years

- Anita K. Jones
 - Lawrent B. Quarles
 - Professor of Engineering and Applied Science, University of Virginia
 - Term: One year
 - Education: A.B. 1964 (Rice), M.A. 1965, Ph.D. 1973 (University of Texas at Austin), Ph.D. 1973 (Carnegie Mellon)
 - Current MIT activities: Lincoln Laboratory Advisory Board member

- Robert B. Millard
 - Managing director, Lehman Brothers Inc.
 - Term: Five years (Corporation member since 2003)
 - Current MIT activities: Corporation Development Committee; Corporation Development Committee Advisory Group; visiting committees for physics and linguistics and philosophy

- Paula J. Olesiwick
 - Program director, Alfred P. Sloan Foundation
 - Term: Five years (Corporation member ex officio in 2003-04; alumni member) in 2004-05)
 - Education: B.S. 1975 (Yale), Ph.D. 1979 (MIT)
 - Current MIT activities: Alumni Association president (2003-04), Corporation Committee on the Presidency, ex officio; Corporation Joint Advisory Committee on Institute-wide Affairs ex officio; Corporation Development Committee; Corporation Development Committee Advisory Group; visiting committees for chemistry and Whittaker College

- Sanjay K. Rao
 - Program manager, Microsoft Corp.
 - Term: Five years (nominee from recent classes)
 - Education: S.B. 2002 and M.S. 2003 (both from MIT)
 - MIT honors: Course VI Special Recognition Award (2002)

- Milton H. Roye
 - Vice president for sales and engineering, Weidmann Plastics Technology N.A., Inc.
 - Term: Five years
 - Current MI- T activities: Mechanical engineering visiting committee; educational counselor
 - MIT honors: Bronze Beaver Award (2001), Harold E. Lob- dell ’17 Distinguished Service Award (1991)

- Martin Y. Tang
 - Asia chair, Asia, Spencer Stuart
 - Term: Five years
 - Education: B.S. 1970 (Cornell), J.D. 1975, M.B.A. 1975 (all from Stanford)
 - Current MIT activities: Sloan School visiting commit- tee; MIT honors: Founding Life Sustaining Fellow (1977)

- Susan E. Whitehead
 - Vice chair, Whitehead Institute for Biomedical Research
 - Term: Life membership (Corporation member since 1997)
 - Education: B.S. 1976 (Cornell), J.D. 1982 (Yeshiva Uni- versity)
 - Current MIT activities: life board member, Whitehead Institute; Corporation Membership Committee; Corpora- tion Committee on the Presid- ency; visiting committees for biological engineering (chair since 2002), biology, brain and cognitive sciences, Whittaker College

- Barrie B. Zesiger
 - Founding partner and managing director, Zesiger Capital Group LLC
 - Term: Five years (Corporation member since 2000)
 - Education: B.A. 1967, J.D. 1974 (both from Stanford)
 - Current MIT activities: Corporation Committee on the Presidency; Executive Com- mittee; visiting committees for brain and cognitive sciences (chair since 2000), Dean for Undergraduate Education
A smiling ambassador of goodwill with a message of international cooperation, Lt. Col. Mike Fincke appeared from outside the space on an enormous video screen in Kresge Auditorium on Saturday, June 5 to greet his MIT classmates at their 15th reunion.

I miss MIT. I really was sad I couldn’t come to this year’s reunion,” said the astronaut alumnus, who is on the International Space Station (ISS) through October.

But there wasn’t a touch of sadness about Fincke (who earned S.B. degrees in 1985 in aeronautics and astronautics and in earth, atmospheric, and planetary sciences) when he appeared at the Alumni Association’s annual Technology Day via a video teleconference call at about 11:45 a.m.

President Charles M. Vest stood at the podium on the Kresge stage, the head and shoulders of Fincke towering behind him on a 30-foot screen. The two chatted about space exploration and MIT for about 15 minutes.

Fincke requested the teleconference so he wouldn’t miss his reunion, even if he couldn’t be at MIT physically. He has been living on the ISS since April 21 as the Expedition 9 flight engineer and ISS science officer, working with Russian cosmonaut Commander Gennady Padalk.

Fincke and Padalk trained in Kazakhstan before the launch, and Fincke veritably relishes the international aspect of the ISS. His message to the approximately 1,100 alumni gathered in Kresge was one of peace and international cooperation.

“Human beings should work together constructively and not destructively,” said appearing to gently bounce in the zero-gravity atmosphere as though standing chest-deep in water. He wore a blue jumpsuit and his hair was clipped short. He waved several times to the crowd (which he could see) and grinned and laughed often during the call.

“MIT prepared me nicely for this next sphere of globalization.” To some people “that’s a bad thing. But I think it’s a really good thing—working together across national borders,” he said.

He described the space station as “beautiful, remarkable, an incredible piece of engineering and a great laboratory” in response to a question from Vest. “It’s a great place to do science—though it’s a little odd to do science in an atmosphere where the surface tension is more of a factor than gravity.”

“As for the workload, we’re busy, but it’s nothing compared to Unified,” he said, in a joke that only an MIT crowd would understand. (Unified Engineering in the Department of Aeronautics and Astronautics is described by some of the most demanding series of subjects at MIT.)

Over the years, Fincke has remained in touch with other members of the Class of 1985, some of whom prepared a care-package for him that will travel to the ISS on the next NASA shuttle-Challenger. Fincke, who is the station science officer, watched as his wife and their son were picked up in 1998. Martin Serrano of TV Guide Onscreen put together a DVD montage of photos stringing together a home movie of a whale watch that Fincke, of course, took.

He showed a slide with average commute times for cities, including Jakarta (82 minutes) and Manila (120 minutes). He explained that some of the challenges and solutions associated with the transportation. There are 1.8 bicycles per family in China.

Attitudes toward cars must change, speakers say

Fincke requested the teleconference so he wouldn’t miss his reunion, even if he couldn’t be at MIT physically. He has been living on the ISS since April 21 as the Expedition 9 flight engineer and ISS science officer, working with Russian cosmonaut Commander Gennady Padalk.

Fincke and Padalk trained in Kazakhstan before the launch, and Fincke veritably relishes the international aspect of the ISS. His message to the approximately 1,100 alumni gathered in Kresge was one of peace and international cooperation.

“Human beings should work together constructively and not destructively,” said appearing to gently bounce in the zero-gravity atmosphere as though standing chest-deep in water. He wore a blue jumpsuit and his hair was clipped short. He waved several times to the crowd (which he could see) and grinned and laughed often during the call.

“MIT prepared me nicely for this next sphere of globalization.” To some people “that’s a bad thing. But I think it’s a really good thing—working together across national borders,” he said.

He described the space station as “beautiful, remarkable, an incredible piece of engineering and a great laboratory” in response to a question from Vest. “It’s a great place to do science—though it’s a little odd to do science in an atmosphere where the surface tension is more of a factor than gravity.”

“As for the workload, we’re busy, but it’s nothing compared to Unified,” he said, in a joke that only an MIT crowd would understand. (Unified Engineering in the Department of Aeronautics and Astronautics is described by some of the most demanding series of subjects at MIT.)

Over the years, Fincke has remained in touch with other members of the Class of 1985, some of whom prepared a care-package for him that will travel to the ISS on the next NASA shuttle-Challenger. Fincke, who is the station science officer, watched as his wife and their son were picked up in 1998. Martin Serrano of TV Guide Onscreen put together a DVD montage of photos stringing together a home movie of a whale watch that Fincke, of course, took.

He showed a slide with average commute times for cities, including Jakarta (82 minutes) and Manila (120 minutes). He explained that some of the challenges and solutions associated with the transportation. There are 1.8 bicycles per family in China.